Project Euler 435 Polynomials of Fibonacci numbers (矩阵快速幂)

题目链接:

https://projecteuler.net/problem=435

题意:

The Fibonacci numbers $ {f_n, n ≥ 0}$ are defined recursively as (f_n = f_{n-1} + f_{n-2}) with base cases (f_0 = 0) and (f_1 = 1).

Define the polynomials $ {F_n, n ≥ 0} $ as $F_n(x) =sum_{i=0}^{n} f_i x^i $.

For example, (F_{7}(x) = x + x^2 + 2x^3 + 3x^4 + 5x^5 + 8x^6 + 13x^7), and$ F_7(11) = 268357683$.

Let (n = 10^{15}). Find [$sum_{x=0}^{100} F_{n}(x)] $ mod (1307674368000 (= 15!)).

题解:

[egin{pmatrix} f_{n}x^{n} & f_{n+1}x^{n+1} & F_{n}(x) end{pmatrix} ]

[= egin{pmatrix} f_{n-1}x^{n-1} & f_{n}x^{n} & F_{n-1}(x) end{pmatrix} egin{pmatrix} 0 & 0 & x^{2} \ 0 & 1 & 1 \ 1 & 0 & i end{pmatrix} ]

[= egin{pmatrix} f_{0}x^{0} & f_{1}x^{1} & F_{1}(x) end{pmatrix} egin{pmatrix} 0 & 0 & x^{2} \ 0 & 1 & 1 \ 1 & 0 & i end{pmatrix}^{n-1} ]

[= egin{pmatrix} 0 & x & x end{pmatrix} egin{pmatrix} 0 & 0 & x^{2} \ 0 & 1 & 1 \ 1 & 0 & i end{pmatrix}^{n-1} ]

然后跑矩阵快速幂就可以得到 (F_{n}(x))了。(C)++ 会爆 (long long)... 用 (Python)吧...

其实用 (C)++也行,就是将模数分解再用 (crt) 合并。

代码:

#coding: utf-8

from math import sqrt

mod = 1307674368000

def matrix_mult(a, b) :
    n = len(a); m = len(b); h = len(b[0])
    ans = [[0, 0, 0],[0, 0, 0],[0, 0, 0]]
    for i in range(n) :
        for j in range(m) :
            for k in range(h) :
                ans[i][k] += a[i][j] * b[j][k]
                if ans[i][k] >= mod :
                    ans[i][k] %= mod
                ans[i][k] %= mod
        ans[i][j] %= mod
    return ans

def qpower(a, n, i) :
    ans = [[0, i, i],[0, 0, 0],[0, 0, 0]]
    while n > 0 :
        if n & 1 : ans = matrix_mult(ans, a)
        n >>= 1
        a = matrix_mult(a, a)
    return ans[0][2]

if __name__ =="__main__":
    ans = 0
    for i in range(101):
        a = [[0, 0, i ** 2],
             [0, 1, 1],
             [1, 0, i]]
        ans += qpower(a, 10 ** 15 - 1, i)
    print( ans % mod )

原文地址:https://www.cnblogs.com/LzyRapx/p/9058311.html