Chapter 6(树)


1.树的储存方式
//****************双亲表示法************************
#define Max_TREE_SIZE 100
typedef int TElemType;
typedef struct PTNode //结点结构
{
	TElemType data;
	int parent;
}PTNode;

typedef struct
{
	PTNode nodes[Max_TREE_SIZE];//结点数组
	int r,n;
}Ptree;


//****************孩子表示法************************
typedef struct CTNode //孩子结点
{
	int child;
	struct CTNode *next;
}*ChildPtr;

typedef struct //表头结构
{
	TElemType data;
	ChildPtr firstChild;
}CTBox;


typedef struct 
{
	CTBox nodes[Max_TREE_SIZE]; //结点数组
	int r,n;
}CTree;



//****************双亲孩子表示法************************

typedef struct CTNode
{
	int child;
	struct CTNode *next;
}*ChildPtr;

typedef struct
{
	TElemType data;
	int parent;
	ChildPtr firstChild;
}CTBox;

typedef struct
{
	CTBox nodes[Max_TREE_SIZE];
	int r,n;
}CTree;

2.根据扩展前序列确定一个二叉树(通过外界持续输入字符串或者是以字符串的形式输入)
//**************************BiTree.h*******************************
#ifndef BITREE_H
#define BITREE_H

#include <stdio.h>
#include <stdlib.h>

typedef int datatype;

typedef struct Tree
{
	datatype data;
	struct Tree *left;
	struct Tree *right;
}Node,*BiTree;


//以输入扩展前序递归的方式创建二叉树
void CreateBiTree(BiTree *T);

//后序遍历
void NextOrderTravel(BiTree T);



#endif //BITREE_H


//**************************BiTree.c*******************************

#include "BiTree.h"

//以输入扩展前序递归的方式创建二叉树
void CreateBiTree(BiTree *T)
{
	char ch;
	scanf("%c",&ch);

	if('#' == ch)
	{
		*T = NULL;
	}
	else
	{
		*T = (BiTree)malloc(sizeof(Node));
		(*T)->data = ch;
		CreateBiTree(&(*T)->left);
		CreateBiTree(&(*T)->right);
	}
}

void NextOrderTravel(BiTree T)
{
	if(NULL == T)return;

	NextOrderTravel(T->left);
	NextOrderTravel(T->right);

	printf("%c ",T->data);
}


//**************************BiTreeTest.c*******************************
#include <stdio.h>
#include "BiTree.h"

char *str;

void CreateBiTreeStr(BiTree *T)
{

	char ch = *str++;

	if('#' == ch)
	{
		*T = NULL;
	}
	else
	{
		*T = (BiTree)malloc(sizeof(Node));
		(*T)->data = ch;
		CreateBiTreeStr(&(*T)->left);
		CreateBiTreeStr(&(*T)->right);
	}
}

//将这个序列以字符串的形式输入函数生成二叉树
void Create(BiTree *T,char *str1)
{
	str = str1;
	CreateBiTreeStr(T);
}

int main()
{
	BiTree T = NULL;
	CreateBiTree(&T);
	NextOrderTravel(T);

	printf("
-------
");


	char *str1 = "AB#D##C##";
	Create(&T,str1);

	NextOrderTravel(T);
}

3.线索二叉树的建立,线索化,遍历
#include <stdio.h>  
#include <stdlib.h>  
  
typedef char ElemType;  
  
// 线索存储标志位  
// Link(0):表示指向左右孩子的指针  
// Thread(1):表示指向前驱后继的线索  
typedef enum {Link, Thread} PointerTag;  
  
typedef struct BiThrNode  
{  
    char data;  
    struct BiThrNode *lchild, *rchild;  
    PointerTag ltag;  
    PointerTag rtag;  
} BiThrNode, *BiThrTree;  
  
// 全局变量,始终指向刚刚访问过的结点  
BiThrTree pre;  
  
// 创建一棵二叉树,约定用户遵照前序遍历的方式输入数据  
void CreateBiThrTree( BiThrTree *T )  
{  
    char c;  
  
    scanf("%c", &c);  
    if( '#' == c )  
    {  
        *T = NULL;  
    }  
    else  
    {  
        *T = (BiThrNode *)malloc(sizeof(BiThrNode));  
        (*T)->data = c;  
        (*T)->ltag = Link;  
        (*T)->rtag = Link;  
  
        CreateBiThrTree(&(*T)->lchild);  
        CreateBiThrTree(&(*T)->rchild);  
    }  
}  
  
// 中序遍历线索化  
void InThreading(BiThrTree T)  
{  
    if( T )  
    {  
        InThreading( T->lchild );        // 递归左孩子线索化  
  
        if( !T->lchild ) // 如果该结点没有左孩子,设置ltag为Thread,并把lchild指向刚刚访问的结点。  
        {  
            T->ltag = Thread;  
            T->lchild = pre;  
        }  
  
        if( !pre->rchild )  
        {  
            pre->rtag = Thread;  
            pre->rchild = T;  
        }  
  
        pre = T;  
  
        InThreading( T->rchild );        // 递归右孩子线索化  
    }  
}  
  
void InOrderThreading( BiThrTree *p, BiThrTree T )  
{  
    *p = (BiThrTree)malloc(sizeof(BiThrNode));  
    (*p)->ltag = Link;  
    (*p)->rtag = Thread;  
    (*p)->rchild = *p;  
    if( !T )  
    {  
        (*p)->lchild = *p;  
    }  
    else  
    {  
        (*p)->lchild = T;  
        pre = *p;  
        InThreading(T);  
        pre->rchild = *p;  
        pre->rtag = Thread;  
        (*p)->rchild = pre;  
    }  
}  
  
void visit( char c )  
{  
    printf("%c", c);  
}  
  
// 中序遍历二叉树,非递归  
void InOrderTraverse( BiThrTree T )  
{  
    BiThrTree p;  
    p = T->lchild;  
  
    while( p != T )  
    {  
        while( p->ltag == Link )  
        {  
            p = p->lchild;  
        }  
        visit(p->data);  
  
        while( p->rtag == Thread && p->rchild != T )  
        {  
            p = p->rchild;  
            visit(p->data);  
        }  
          
        p = p->rchild;  
    }  
}  
  
int main()  
{  
    BiThrTree P, T = NULL;  
  
    CreateBiThrTree( &T );  
  
    InOrderThreading( &P, T );  
  
    printf("中序遍历输出结果为: ");  
  
    InOrderTraverse( P );  
  
    printf("
");  
  
    return 0;  
}  

3.赫夫曼树的建立
#include<stdio.h>  
#include<stdlib.h>  
typedef int ElemType;  
struct BTreeNode  
{  
    ElemType data;  
    struct BTreeNode* left;  
    struct BTreeNode* right;  
};  
  
//1、输出二叉树,可在前序遍历的基础上修改。采用广义表格式,元素类型为int  
void PrintBTree_int(struct BTreeNode* BT)  
{  
    if (BT != NULL)  
    {  
        printf("%d", BT->data); //输出根结点的值  
        if (BT->left != NULL || BT->right != NULL)  
        {  
            printf("(");  
            PrintBTree_int(BT->left); //输出左子树  
            if (BT->right != NULL)  
                printf(",");  
            PrintBTree_int(BT->right); //输出右子树  
            printf(")");  
        }  
    }  
}  
  
//2、根据数组 a 中 n 个权值建立一棵哈夫曼树,返回树根指针  
struct BTreeNode* CreateHuffman(ElemType a[], int n)  
{  
    int i, j;  
    struct BTreeNode **b, *q;  
    b = malloc(n*sizeof(struct BTreeNode));  
    for (i = 0; i < n; i++) //初始化b指针数组,使每个指针元素指向a数组中对应的元素结点  
    {  
        b[i] = malloc(sizeof(struct BTreeNode));  
        b[i]->data = a[i];  
        b[i]->left = b[i]->right = NULL;  
    }  
    for (i = 1; i < n; i++)//进行 n-1 次循环建立哈夫曼树  
    {  
        //k1表示森林中具有最小权值的树根结点的下标,k2为次最小的下标  
        int k1 = -1, k2;  
        for (j = 0; j < n; j++)//让k1初始指向森林中第一棵树,k2指向第二棵  
        {  
            if (b[j] != NULL && k1 == -1)  
            {  
                k1 = j;  
                continue;  
            }  
            if (b[j] != NULL)  
            {  
                k2 = j;  
                break;  
            }  
        }  
        for (j = k2; j < n; j++)//从当前森林中求出最小权值树和次最小  
        {  
            if (b[j] != NULL)  
            {  
                if (b[j]->data < b[k1]->data)  
                {  
                    k2 = k1;  
                    k1 = j;  
                }  
                else if (b[j]->data < b[k2]->data)  
                    k2 = j;  
            }  
        }  
        //由最小权值树和次最小权值树建立一棵新树,q指向树根结点  
        q = malloc(sizeof(struct BTreeNode));  
        q->data = b[k1]->data + b[k2]->data;  
        q->left = b[k1];  
        q->right = b[k2];  
  
        b[k1] = q;//将指向新树的指针赋给b指针数组中k1位置  
        b[k2] = NULL;//k2位置为空  
    }  
    free(b); //删除动态建立的数组b  
    return q; //返回整个哈夫曼树的树根指针  
}  
  
//3、求哈夫曼树的带权路径长度  
ElemType WeightPathLength(struct BTreeNode* FBT, int len)//len初始为0  
{  
    if (FBT == NULL) //空树返回0  
        return 0;  
    else  
    {  
        if (FBT->left == NULL && FBT->right == NULL)//访问到叶子结点  
            return FBT->data * len;  
        else //访问到非叶子结点,进行递归调用,返回左右子树的带权路径长度之和,len递增  
            return WeightPathLength(FBT->left,len+1)+WeightPathLength(FBT->right,len+1);  
    }  
}  
  
//4、哈夫曼编码(可以根据哈夫曼树带权路径长度的算法基础上进行修改)  
void HuffManCoding(struct BTreeNode* FBT, int len)//len初始值为0  
{  
    static int a[10];//定义静态数组a,保存每个叶子的编码,数组长度至少是树深度减一  
    if (FBT != NULL)//访问到叶子结点时输出其保存在数组a中的0和1序列编码  
    {  
        if (FBT->left == NULL && FBT->right == NULL)  
        {  
            int i;  
            printf("结点权值为%d的编码:", FBT->data);  
            for (i = 0; i < len; i++)  
                printf("%d", a[i]);  
            printf("
");  
        }  
        else//访问到非叶子结点时分别向左右子树递归调用,并把分支上的0、1编码保存到数组a  
        {   //的对应元素中,向下深入一层时len值增1  
            a[len] = 0;  
            HuffManCoding(FBT->left, len + 1);  
            a[len] = 1;  
            HuffManCoding(FBT->right, len + 1);  
        }  
    }  
}  
  
//主函数  
void main()  
{  
    int n, i;  
    ElemType* a;  
    struct BTreeNode* fbt;  
    printf("从键盘输入待构造的哈夫曼树中带权叶子结点数n:");  
    while(1)  
    {  
        scanf("%d", &n);  
        if (n > 1)  
            break;  
        else  
            printf("重输n值:");  
    }  
    a = malloc(n*sizeof(ElemType));  
    printf("从键盘输入%d个整数作为权值:", n);  
    for (i = 0; i < n; i++)  
        scanf(" %d", &a[i]);  
    fbt = CreateHuffman(a, n);  
    printf("广义表形式的哈夫曼树:");  
    PrintBTree_int(fbt);  
    printf("
");  
    printf("哈夫曼树的带权路径长度:");  
    printf("%d
", WeightPathLength(fbt, 0));  
    printf("树中每个叶子结点的哈夫曼编码:
");  
    HuffManCoding(fbt, 0);  
}  

附件列表

原文地址:https://www.cnblogs.com/LyndonMario/p/9326349.html