数据结构概念

数据结构研究如何使用存储区解决问题
算法研究解决常见问题的方法

数字之间的关系可以从两个完全不同的角度
进行描述
逻辑关系(逻辑结构)描述数字之间和计算机
无关的关系
物理关系(物理结构)描述存放数字的存储区
之间的关系

逻辑结构分为如下几种
1.集合结构:所有数字可以看作一个整体
2.线性结构:可以用一条有顺序的线把所有
数字连起来
3.树状结构:所有数据都是从一个数据开始
向一个方向扩展出来的,任何数据
可以扩展出多个其他数据
4.网状结构:任何两个数字之间可以有直接的
联系,所有数字之间的联系没有统一
方向

物理结构有以下两种
1.顺序结构:所有存储区在内存里连续排列
数组和动态分配内存都是顺序结构的例子
顺序结构中每个存储区有一个编号,
可以根据编号直接找到对应的存储区
根据编号找到存储区的方法叫随机访问,
顺序结构支持随机访问能力
顺序结构中存储区个数很难调整,这
有可能造成内存的浪费
顺序结构不适合进行插入或删除操作

/*
    顺序结构演示
*/
#include <stdio.h>
void remove_num(int *p_num, int size, int num) {
    int num1 = 0;
    for (num1 = 0;num1 <= size - 1;num1++) {
        if (num < *(p_num + num1)) {
            *(p_num + num1 - 1) = *(p_num + num1);
        }
        else if (num1 && *(p_num + num1) < *(p_num + num1 - 1)) {
            *(p_num + num1 - 1) = *(p_num + num1);
            break;
        }
    }
}
void insert(int *p_num, int size, int num) {
    int tmp = num, num1 = 0, tmp1 = 0;
    for (num1 = 0;num1 <= size - 1;num1++) {
        if (tmp < *(p_num + num1)) {
            tmp1 = tmp;
            tmp = *(p_num + num1);
            *(p_num + num1) = tmp1;
        }
        else if (num1 && *(p_num + num1) < *(p_num + num1 - 1)) {
            tmp1 = tmp;
            tmp = *(p_num + num1);
            *(p_num + num1) = tmp1;
            break;
        }
    }
}
int main() {
    int arr[20] = {2, 6, 12, 14, 17, 21, 23,
        31, 35, 37};
    int num = 0;
    insert(arr, 20, 27);
    for (num = 0;num <= 19;num++) {
        printf("%d ", arr[num]);
    }
    printf("
");
    remove_num(arr, 20, 14);
    for (num = 0;num <= 19;num++) {
        printf("%d ", arr[num]);
    }
    printf("
");
    return 0;
}

2.链式物理结构:由多个无关的存储区构成,
任何两个存储区之间可以用指针连接

链式物理结构中每个存储区叫做一个
结点
单向线性链式物理结构中任何两个结点
之间都有前后关系(每个结点里只
需要包含一个指针)
单向线性链式物理结构中最后一个结点
里的指针必须是空指针
链式物理结构不直接支持随机访问能力
可以在所有结点前增加一个无效头结点,
在所有结点后增加一个无效尾结点,这样
可以简化程序的编写  

/*
    链式物理结构演示
*/
#include <stdio.h>
typedef struct node {
    int num;
    struct node *p_next;
} node;
int main() {
    node node1 = {1}, node2 = {5}, node3 = {12}, head = {0}, tail = {0}, node4 = {7};
    int cnt = 0;
    node *p_node = NULL;
    node1.p_next = &node2;
    node2.p_next = &node3;
    head.p_next = &node1;
    node3.p_next = &tail;
    for (p_node = &head;p_node != &tail;p_node = p_node->p_next) {
        node *p_first = p_node;
        node *p_mid = p_first->p_next;
        node *p_last = p_mid->p_next;
        if (p_mid != &tail) {
            printf("%d ", p_mid->num);
        }
    }
    printf("
");
    for (p_node = &head;p_node != &tail;p_node= p_node->p_next) {
        node *p_first = p_node;
        node *p_mid = p_first->p_next;
        node *p_last = p_mid->p_next;
        if (p_mid != &tail && cnt == 2) {
            printf("数字是%d
", p_mid->num);
        }
        cnt++;
    }
    for (p_node = &head;p_node != &tail;p_node = p_node->p_next) {
        node *p_first = p_node;
        node *p_mid = p_first->p_next;
        node *p_last = p_mid->p_next;
        if (p_mid == &tail || p_mid->num > node4.num) {
            p_first->p_next = &node4;
            node4.p_next = p_mid;
            break;
        }
    }
    for (p_node = &head;p_node != &tail;p_node = p_node->p_next) {
        node *p_first = p_node;
        node *p_mid = p_first->p_next;
        node *p_last = p_mid->p_next;
        if (p_mid != &tail) {
            printf("%d ", p_mid->num);
        }
    }
    printf("
");
    for (p_node = &head;p_node != &tail;p_node = p_node->p_next) {
        node *p_first = p_node;
        node *p_mid = p_first->p_next;
        node *p_last = p_mid->p_next;
        if (p_mid != &tail && p_mid->num == 5) {
            p_first->p_next = p_last;
            break;
        }
    }
    for (p_node = &head;p_node != &tail;p_node = p_node->p_next) {
        node *p_first = p_node;
        node *p_mid = p_first->p_next;
        node *p_last = p_mid->p_next;
        if (p_mid != &tail) {
            printf("%d ", p_mid->num);
        }
    }
    printf("
");
    return 0;
}

链式物理结构中每个有效结点都应该是动态
分配的
链式物理结构中能容纳的数字数量可以灵活
变化

数据结构由一组存储区和一组相关的函数构成
这些函数提供了对存储区的使用方法
程序中的其他语句只能通过这组函数使用这些
存储区

/*
    动态分配链式物理结构演示
*/
#include <stdio.h>
#include <stdlib.h>
typedef struct node {
    int num;
    struct node *p_next;
} node;
int main() {
    int num = 0;
    node head = {0}, tail = {0}, *p_tmp = NULL, *p_node = NULL;
    head.p_next = &tail;
    while (1) {
        printf("请输入一个数字:");
        scanf("%d", &num);
        if (num < 0) {
            break;
        }
        p_tmp = (node *)malloc(sizeof(node));
        if (!p_tmp) {
            continue;
        }
        p_tmp->num = num;
        p_tmp->p_next = NULL;
        for (p_node = &head;p_node != &tail;p_node = p_node->p_next) {
            node *p_first = p_node;
            node *p_mid = p_first->p_next;
            node *p_last = p_mid->p_next;
            if (p_mid == &tail) {
                p_first->p_next = p_tmp;
                p_tmp->p_next = p_mid;
                break;
            }
        }
    }
    printf("请输入要删除的数字:");
    scanf("%d", &num);
    for (p_node = &head;p_node != &tail;p_node = p_node->p_next) {
        node *p_first = p_node;
        node *p_mid = p_first->p_next;
        node *p_last = p_mid->p_next;
        if (p_mid != &tail && p_mid->num == num) {
            p_first->p_next = p_last;
            free(p_mid);
            p_mid = NULL;
            break;
        }
    }
    for (p_node = &head;p_node != &tail;p_node = p_node->p_next) {
        node *p_first = p_node;
        node *p_mid = p_first->p_next;
        node *p_last = p_mid->p_next;
        if (p_mid != &tail) {
            printf("%d ", p_mid->num);
        }
    }
    printf("
");
    while (head.p_next != &tail) {
        node *p_first = &head;
        node *p_mid = p_first->p_next;
        node *p_last = p_mid->p_next;
        p_first->p_next = p_last;
        free(p_mid);
        p_mid = NULL;
    }
    return 0;
}
原文地址:https://www.cnblogs.com/LuckCoder/p/8674697.html