2021年新高考一卷数学-函数导数

  1. 已知函数 (f(x)=x(1-ln x))
    (1)讨论函数的单调性
    (2)设 (a,b) 为两个不相等的正数,且 (bln a-aln b=a-b) ,证明:(2<{1over a}+{1over b}<e)

解:

(1)求导得 (f'(x)=1-ln x+xcdot (-{1over x})=-ln x(x>0))

(f'(x)=0)(x=1)

列表得:

(x) ((0, 1)) (1) ((1,+infty))
(f'(x)) (+) (0) (-)
(f(x)) (uparrow) (downarrow)

(f(x))((0, 1)) 单调递增,在 ((1,+infty)) 单调递减


(2)由 (bln a-aln b=a-b) 得:

(displaystyle {ln aover a}-{ln bover b}={1over b}-{1over a})

(displaystyle {1over a}(1-ln {1over a})={1over b}(1-ln {1over b}))

(displaystyle f({1over a})=f({1over b}))

(ecause xin(0, 1))(x>0wedge 1-ln x>0)

( herefore f(x)=x(1-ln x)>0)

(xin(1,+infty)) 时,令 (f(x)=0)(x=e)

(ecause a eq b)

( herefore displaystyle {1over a} eq {1over b})

不妨设 (displaystyle 0<{1over a}<{1over b})

(ecause f(x))((0, 1)) 单掉递增且恒正, ((1,+infty)) 单调递减且 (f(e)=0)

( herefore displaystyle 0<{1over a}<1<{1over b}<e)

很显然的一个极值点偏移

(g(x)=f(x)-f(2-x), xin(0, 1))

( herefore g'(x)=f'(x)+f'(2-x)=-ln{x(2-x)})

(ecause xin(0, 1))(x(2-x)in(0, 1))

( herefore g'(x)=-ln {x(2-x)}>-ln 1=0)(g(x))((0, 1)) 恒增

( herefore g(x)<g(1)=f(1)-f(2-1)=0)

(f(x)-f(2-x)<0)

( herefore f(x)<f(2-x))

(ecause displaystyle {1over a}in (0, 1))

( herefore displaystyle f({1over b})=f({1over a})<f(2-{1over a}))

(displaystyle ecause {1over b},2-{1over a}in(1, e))(f(x))((1,e)) 单调递减

( herefore displaystyle {1over b}>2-{1over a})

(displaystyle {1over a}+{1over b}>2)

(h(x)=f(x)-f(e-x)=x-xln x-(e-x)+(e-x)ln(e-x)=2x+xln{e-xover x}+eln (e-x),xin(0, 1))

(ecause displaystyle x<1)(x<e-1)(displaystyle x<{eover 2})

( herefore displaystyle e-x>1)(e-x>x)

( herefore displaystyle ln (e-x)>ln 1=0, ln{e-xover x}>ln 1=0)

( herefore h(x)>0)(f(x)>f(e-x),xin (0, 1))

( herefore displaystyle f({1over b})=f({1over a})>f(e-{1over a}))

(displaystyle ecause {1over b},2-{1over a}in(1, e))(f(x))((1,e)) 单调递减

( herefore displaystyle {1over b}<e-{1over a})

( herefore displaystyle {1over a}+{1over b}<e)

综上,(displaystyle 2<{1over a}+{1over b}<e)

原文地址:https://www.cnblogs.com/JustinRochester/p/14860923.html