奇怪的数学题(51nod1847)——min_25筛+杜教筛+第二类斯特林数

题面

    51nod1847

解析

   定义$f(i)$为$i$的次大因数,特别地$f(1)=0$

    那么我们就是去求$$sum_{i=1}^{n}sum_{j=1}^{n}f^{m}(gcd(i, j))$$

  这种东西的套路就是枚举$gcd$然后用欧拉函数处理, egin{align*}sum_{i=1}^{n}sum_{j=1}^{n}f^{m}(gcd(i, j)) &= sum_{i=1}^{n}sum_{j=1}^{left lfloor frac{n}{i} ight floor} sum_{k=1}^{left lfloor frac{n}{i} ight floor}[gcd(j, k)==1]f(i)\&=sum_{i=1}^{n}f^{m}(i)((2sum_{j=1}^{left lfloor frac{n}{i} ight floor}varphi(j)) - 1)end{align*}

  求$varphi(i)$的前缀和用杜教筛即可,问题在于如何求$f(i)$的前缀和

  考虑$min25$筛的过程,它把所有数对前缀和的贡献分为了质数的贡献与合数的贡献,这道题中质数的贡献显然是1,因此,可以构造一个完全积性函数$c(i)=1$处理质数的贡献。接下来处理合数的贡献,考虑在$min25$的第一步处理过程中,每一个合数都会被它最小的质因子$minp$筛去。因此在枚举第$i$个质数$pri[i]$时就会有以$pri[i]$为最小质因子的所有合数的贡献。定义完全积性函数$b(i)=i^{m}$,$g$数组为筛法第一步中处理的函数,$h(i)$表示$1$到$i$中合数对答案的贡献,用公式写来,就是这样:$$g(n, i) = g(n, i)-b(pri[i])*(g(left lfloor  frac{n}{pri[i]} ight floor, i-1) - sum_{j=1}^{i-1}b(pri[j]))\h(n)=h(n)+g(left lfloor  frac{n}{pri[i]} ight floor, i-1) - sum_{j=1}^{i-1}b(pri[j])$$

  $b(i)$的前缀和在线性筛时预处理即可,问题在于如何预处理$g(n, 0)=sum_{i=1}^{n}i^{m}$,考虑用第二类斯特林数,原式变为:$$sum_{i=1}^{n}sum_{j=0}^{m}egin{Bmatrix}m\jend{Bmatrix}cdot j!cdot inom{i}{j}$$

  上式$j$可以直接枚举到$m$, 若$j$大于$m$,$egin{Bmatrix}m\jend{Bmatrix}=0$;若$j$大于$i$,$C_{i}^{j}=0$,两种情况均不会对求和造成影响。

  套路交换求和号,变为:$$sum_{j=0}^{m}egin{Bmatrix}m\jend{Bmatrix}cdot j!sum_{i=0}^{n}inom{i}{j}$$

  注意到$sum_{i=0}^{n}inom{i}{j}=inom{n+1}{j+1}$,代入得:$$sum_{j=0}^{m}egin{Bmatrix}m\jend{Bmatrix}cdot j! cdot inom{n+1}{j+1}$$

  展开$C_{n+1}^{j+1}$, 将$j!$代入,最终变为$$sum_{j=0}^{m}egin{Bmatrix}m\jend{Bmatrix}frac{prod_{i=n-j+1}^{n+1}i}{j+1}$$

  注意$j+1$可能没有逆元,需要先把$j+1$除了才能取模

  最后做一次数论分块统计答案

  在做这道题时才意识到的细节,在数论分块时,存下来的值恰好为每一块区间的右端点...

 代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int ui;
const int maxn = 1000005;

int n, m, mp[maxn], Mp[maxn], a[maxn];
ui s2[60][60], b[maxn], c[maxn];

ll pri[maxn];
int phi[maxn], cnt;
ui f[maxn], g[maxn], s[maxn];
bool notp[maxn];
map<int, ui> F;

ui qpow(ui x, int y)
{
    ui ret = 1;
    while(y)
    {
        if(y&1)
            ret = ret * x;
        x = x * x;
        y >>= 1;
    }
    return ret;
}

void Euler()
{
    phi[1] = 1;
    for(int i = 2; i <= 1000000; ++i)
    {
        if(!notp[i])
        {
            pri[++cnt] = i;
            phi[i] = i - 1;
            s[cnt] = s[cnt-1] + qpow(i, m);
        }
        for(int j = 1; j <= cnt; ++j)
        {
            if(pri[j] * i > 1000000)    break;
            notp[pri[j]*i] = 1;
            if(i % pri[j] == 0)
            {
                phi[pri[j]*i] = pri[j] * phi[i];
                break;
            }
            phi[pri[j]*i] = (pri[j] - 1) * phi[i];
        }
    }
    for(int i = 1; i <= 1000000; ++i)
        f[i] = f[i-1] + phi[i];
}

void init()
{
    s2[0][0] = 1;
    for(int i = 1; i <= m; ++i)
        for(int j = 1; j <= i; ++j)
            s2[i][j] = s2[i-1][j-1] + j * s2[i-1][j];
}

int get_id(int x)
{
    return x <= 1000000? mp[x]: Mp[n/x];
}

int gcd(int a, int b)
{
    return b == 0? a: gcd(b, a % b);
}

int stak[60];

ui get_mi(int x)
{
    ui ret = 0, mul;
    int sj = min(x, m), t, gc;    
    for(int i = 1; i <= sj; ++i)
    {
        mul = s2[m][i];
        for(int j = 1; j <= i + 1; ++j)
            stak[j] = x + 2 - j;
        t = i + 1;
        for(int j = 1; j <= i + 1; ++j)
        {
            gc = gcd(stak[j], t);
            stak[j] /= gc;
            t /= gc;
            if(t == 1)    break;
        }
        for(int j = 1; j <= i + 1; ++j)
            mul = mul * stak[j];
        ret += mul;
    }
    return ret;
}

ui dfs(int x)
{
    if(x <= 1000000)    return f[x];
    if(F.find(x) != F.end())    return F[x];
    ll tmp = (1LL * x * (x + 1)) >> 1;
    ui ret = (ui)tmp;
    for(int l = 2, r; l <= x; l = r + 1)
    {
        r = x / (x / l);
        ret -= (r - l + 1) * dfs(x / l);
    }
    return F[x] = ret;
}

int main()
{
    scanf("%d%d", &n, &m);
    Euler();
    init();
    int t, tot = 0, id, now;
    for(int l = 1, r; l <= n; l = r + 1)
    {
        t = n / l;
        r = n / t;
        a[++tot] = t;
        if(t <= 1000000)
            mp[t] = tot;
        else
            Mp[n/t] = tot;
        b[tot] = get_mi(t) - 1;
        c[tot] = t - 1;
    }
    for(int i = 1; i <= cnt && pri[i] * pri[i] <= n; ++i)
        for(int j = 1; j <= tot && pri[i] * pri[i] <= a[j]; ++j)
        {
            id = get_id(a[j] / pri[i]);
            b[j] -= (b[id] - s[i-1]) * (s[i] - s[i-1]);
            g[j] += b[id] - s[i-1];
            c[j] -= c[id] - i + 1;
        }
    ui ans = 0;
    for(int l = 1, r; l <= n; l = r + 1)
    {
        r = n / (n / l);
        now = get_id(r);
        id = get_id(l - 1);
        ans += ((g[now] + c[now]) - (g[id] + c[id])) * (2 * dfs(n / l) - 1);
    }
    printf("%u", ans);    
    return 0;
}
View Code
原文地址:https://www.cnblogs.com/Joker-Yza/p/11969074.html