服务注册中心,Eureka与Zookeeper比较

转自https://my.oschina.net/thinwonton/blog/1622905

1. 前言

  服务注册中心,给客户端提供可供调用的服务列表,客户端在进行远程服务调用时,根据服务列表然后选择服务提供方的服务地址进行服务调用。服务注册中心在分布式系统中大量应用,是分布式系统中不可或缺的组件,例如rocketmq的name server,hdfs中的namenode,dubbo中的zk注册中心,spring cloud中的服务注册中心eureka。

  在spring cloud中,除了可以使用eureka作为注册中心外,还可以通过配置的方式使用zookeeper作为注册中心。既然这样,我们该如何选择注册中心的实现呢?

  著名的CAP理论指出,一个分布式系统不可能同时满足C(一致性)、A(可用性)和P(分区容错性)。由于分区容错性在是分布式系统中必须要保证的,因此我们只能在A和C之间进行权衡。在此Zookeeper保证的是CP, 而Eureka则是AP。

Consistency

  中文叫做"一致性"。意思是,写操作之后的读操作,必须返回该值。举例来说,某条记录是 v0,用户向 G1 发起一个写操作,将其改为 v1,接下来,用户的读操作就会得到 v1。这就叫一致性。

Availability

   中文叫做"可用性",意思是只要收到用户的请求,服务器就必须给出回应。用户可以选择向 G1 或 G2 发起读操作。不管是哪台服务器,只要收到请求,就必须告诉用户,到底是 v0 还是 v1,否则就不满足可用性。

Partition tolerance:

  中文叫做"分区容错",大多数分布式系统都分布在多个子网络。每个子网络就叫做一个区(partition)。分区容错的意思是,区间通信可能失败。比如,一台服务器放在中国,另一台服务器放在美国,这就是两个区,它们之间可能无法通信。

即在一个分布式系统中,只能满足其中的两个,且在一般情况下,都是要满足分区容错性的。

2. Zookeeper保证CP

  当向注册中心查询服务列表时,我们可以容忍注册中心返回的是几分钟以前的注册信息,但不能接受服务直接down掉不可用。也就是说,服务注册功能对可用性的要求要高于一致性。但是zk会出现这样一种情况,当master节点因为网络故障与其他节点失去联系时,剩余节点会重新进行leader选举。问题在于,选举leader的时间太长,30 ~ 120s, 且选举期间整个zk集群都是不可用的,这就导致在选举期间注册服务瘫痪。在云部署的环境下,因网络问题使得zk集群失去master节点是较大概率会发生的事,虽然服务能够最终恢复,但是漫长的选举时间导致的注册长期不可用是不能容忍的。

  ZooKeeper 集群中的所有机器通过一个 Leader 选举过程来选定一台称为 “Leader” 的机器,Leader 既可以为客户端提供写服务又能提供读服务。除了 Leader 外,Follower 和 Observer 都只能提供读服务。Follower 和 Observer 唯一的区别在于 Observer 机器不参与 Leader 的选举过程,也不参与写操作的“过半写成功”策略,因此 Observer 机器可以在不影响写性能的情况下提升集群的读性能。

  当 Leader 服务器出现网络中断、崩溃退出与重启等异常情况时,ZAB 协议就会进人恢复模式并选举产生新的Leader服务器。这个过程大致是这样的:

    1. Leader election(选举阶段):节点在一开始都处于选举阶段,只要有一个节点得到超半数节点的票数,它就可以当选准 leader。
    2. Discovery(发现阶段):在这个阶段,followers 跟准 leader 进行通信,同步 followers 最近接收的事务提议。
    3. Synchronization(同步阶段):同步阶段主要是利用 leader 前一阶段获得的最新提议历史,同步集群中所有的副本。同步完成之后 准 leader 才会成为真正的 leader。
    4. Broadcast(广播阶段) 到了这个阶段,Zookeeper 集群才能正式对外提供事务服务,并且 leader 可以进行消息广播。同时如果有新的节点加入,还需要对新节点进行同步。

  2.1ZooKeeper &ZAB 协议&Paxos算法

    2.1.1 ZAB 协议&Paxos算法

  Paxos 算法应该可以说是 ZooKeeper 的灵魂了。但是,ZooKeeper 并没有完全采用 Paxos算法 ,而是使用 ZAB 协议作为其保证数据一致性的核心算法。另外,在ZooKeeper的官方文档中也指出,ZAB协议并不像 Paxos 算法那样,是一种通用的分布式一致性算法,它是一种特别为Zookeeper设计的崩溃可恢复的原子消息广播算法。

    2.1.2 ZAB 协议介绍

  ZAB(ZooKeeper Atomic Broadcast 原子广播) 协议是为分布式协调服务 ZooKeeper 专门设计的一种支持崩溃恢复的原子广播协议。 在 ZooKeeper 中,主要依赖 ZAB 协议来实现分布式数据一致性,基于该协议,ZooKeeper 实现了一种主备模式的系统架构来保持集群中各个副本之间的数据一致性。

    2.1.3 ZAB 协议两种基本的模式:崩溃恢复和消息广播

  ZAB协议包括两种基本的模式,分别是 崩溃恢复和消息广播。当整个服务框架在启动过程中,或是当 Leader 服务器出现网络中断、崩溃退出与重启等异常情况时,ZAB 协议就会进人恢复模式并选举产生新的Leader服务器。当选举产生了新的 Leader 服务器,同时集群中已经有过半的机器与该Leader服务器完成了状态同步之后,ZAB协议就会退出恢复模式。其中,所谓的状态同步是指数据同步,用来保证集群中存在过半的机器能够和Leader服务器的数据状态保持一致。

  当集群中已经有过半的Follower服务器完成了和Leader服务器的状态同步,那么整个服务框架就可以进人消息广播模式了。 当一台同样遵守ZAB协议的服务器启动后加人到集群中时,如果此时集群中已经存在一个Leader服务器在负责进行消息广播,那么新加人的服务器就会自觉地进人数据恢复模式:找到Leader所在的服务器,并与其进行数据同步,然后一起参与到消息广播流程中去。正如上文介绍中所说的,ZooKeeper设计成只允许唯一的一个Leader服务器来进行事务请求的处理。Leader服务器在接收到客户端的事务请求后,会生成对应的事务提案并发起一轮广播协议;而如果集群中的其他机器接收到客户端的事务请求,那么这些非Leader服务器会首先将这个事务请求转发给Leader服务器。

图解分布式一致性协议Paxos

3. Eureka保证AP

  Eureka看明白了这一点,因此在设计时就优先保证可用性。Eureka各个节点都是平等的,几个节点挂掉不会影响正常节点的工作,剩余的节点依然可以提供注册和查询服务。而Eureka的客户端在向某个Eureka注册或如果发现连接失败,则会自动切换至其它节点,只要有一台Eureka还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。除此之外,Eureka还有一种自我保护机制,如果在15分钟内超过85%的节点都没有正常的心跳,那么Eureka就认为客户端与注册中心出现了网络故障,此时会出现以下几种情况: 
    1. Eureka不再从注册列表中移除因为长时间没收到心跳而应该过期的服务 
    2. Eureka仍然能够接受新服务的注册和查询请求,但是不会被同步到其它节点上(即保证当前节点依然可用) 
    3. 当网络稳定时,当前实例新的注册信息会被同步到其它节点中

 因此, Eureka可以很好的应对因网络故障导致部分节点失去联系的情况,而不会像zookeeper那样使整个注册服务瘫痪。

原文地址:https://www.cnblogs.com/Java-Script/p/12299340.html