「BZOJ 2956」模积和

「BZOJ 2956」模积和

(l=min(n,m))。这个 (i eq j) 非常不优雅,所以我们考虑分开计算,即:

[egin{aligned} &sum_{i=1}^{n}sum_{j=1,i eq j}^{m}(n mod i)(mmod j)\ =&sum_{i=1}^{n}sum_{j=1}^{m}(n mod i)(mmod j)-sum_{i=1}^{ exttt{l}}(n mod i)(mmod i)\ end{aligned} ]

对于前半部分有:

[egin{aligned} &sum_{i=1}^{n}sum_{j=1}^{m}(n mod i)(mmod j)\ =&sum_{i=1}^{n}sum_{j=1}^{m}(n -lfloor frac n i floor*i)(m -lfloor frac m j floor*j)\ =&sum_{i=1}^{n}(n -lfloor frac n i floor*i)sum_{j=1}^{m}(m -lfloor frac m j floor*j)\ =&(n^2-sum_{i=1}^{n}lfloor frac n i floor*i)(m^2-sum_{j=1}^{m}lfloor frac m j floor*j)\ end{aligned} ]

两次整除分块计算即可。

对于后半部分有:

[egin{aligned} &sum_{i=1}^{l}(n mod i)(mmod i)\ =&sum_{i=1}^{l}(n -lfloor frac n i floor*i)(m -lfloor frac m i floor*i)\ =& lnm-nsum_{i=1}^{l}lfloor frac m i floor*i-msum_{i=1}^{l}lfloor frac n i floor*i+sum_{i=1}^{l}i^2lfloor frac n i floorlfloor frac m i floor end{aligned} ]

根据我们小学二年级就学过的知识可以知道序列 (1^2,2^2,...,n^2) 的前缀和为 (frac{n(n+1)(2n+1)}{6})

故对于后面三个部分每个部分做一次整除分块即可。

除以 (6) 可能需要分开除,否则可能会爆。

贴个真的很丑的代码:

/*---Author:HenryHuang---*/
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll p=19940417;
ll sum(ll n){
	ll a=n,b=n+1,c=2*n+1;
	if(a%2==0) a/=2;
	else b/=2;
	if(a%3==0) a/=3;
	else if(b%3==0) b/=3;
	else c/=3;
	return a*b%p*c%p;
}
ll gt(ll n,ll k){
	ll ans=0;
	ll l,r;
	for(l=1;l<=n;l=r+1){
		if(l<=k) r=min(n,k/(k/l));
		else r=n;
		ans+=(k/l)*(l+r)*(r-l+1)/2;
	}
	return ans%p;
}
ll solve(ll lim,ll n,ll m){
	ll ans=0;
	ll l,r;
	for(l=1;l<=lim;l=r+1){
		if(l<=lim) r=min(lim,min(n/(n/l),m/(m/l)));
		else r=lim;
		(ans+=(n/l)*(m/l)%p*(sum(r)-sum(l-1)+p)%p)%p;
	}
	return ans%p;
}
int main(){
	ios::sync_with_stdio(0);
	cin.tie(0),cout.tie(0);
	ll n,m;cin>>n>>m;
	ll lim=min(n,m);
	ll Ans=(n*n%p-gt(n,n)+p)%p*(m*m%p-gt(m,m)+p)%p;
	Ans-=lim*n%p*m%p;
	Ans=(Ans+p)%p;
	(Ans+=n*gt(lim,m)%p)%=p;
	(Ans+=m*gt(lim,n)%p)%=p;
	cout<<(Ans-solve(lim,n,m)+p)%p<<'
';
	return 0;
}
原文地址:https://www.cnblogs.com/HenryHuang-Never-Settle/p/solution-BZOJ2956.html