Caffe Batch Normalization层解析

转自:https://blog.csdn.net/weixin_37970694/article/details/79485158

BatchNormalization(BN)的提出:paper[链接](https://arxiv.org/pdf/1502.03167.pdf)
论文中对BN的解释:Making normalization a part of the model architecture and performing the normalization for each training mini-batch. 使用BN归一化的目的是使输入维持在0均值,单位方差。
caffe中的BN由两部分实现:batch_norm_layer和scale_layer,这两个层一起使用。关于为什么要结合两部分可参考百度回答:https://zhidao.baidu.com/question/621624946902864092.html,即batch_norm对输入进行归一化操作,scale对归一化后的输入进行尺度缩放和平移操作。

caffe 中为什么bn层要和scale层一起使用

这个问题bai首先你要理解batchnormal是做什么的du。它其实做了两件事zhi。
1) 输入归一化 x_norm = (x-u)/std, 其中u和std是个累计计算的均值和方dao差。
2)y=alpha×x_norm + beta,对归一化后的x进行比例缩放和位移。其中alpha和beta是通过迭代学习的。
那么caffe中的bn层其实只做了第一件事。scale层做了第二件事。
这样你也就理解了scale层里为什么要设置bias_term=True,这个偏置就对应2)件事里的beta。

1) 输入归一化 x_norm = (x-u)/std, 其中baiu和std是个du累计计算zhi的均值和方差。

2)y=alpha×x_norm + beta,对归一化后dao的x进行比例缩放和位移。其中alpha和beta是通过迭代学习的。
那么caffe中的bn层其实只做了第一件事,scale层做了第二件事,所以两者要一起使用。

一,在Caffe中使用Batch Normalization需要注意以下两点:

1. 要配合Scale层一起使用。

2. 训练的时候,将BN层的use_global_stats设置为false,然后测试的时候将use_global_stats设置为true。

二,基本公式梳理:

Scale层主要完成 top=alpha∗bottom+betatop=alpha∗bottom+beta的过程,则层中主要有两个参数alphaalpha与betabeta,
求导会比较简单。∂y∂x=alpha;∂y∂alpha=x;∂y∂beta=1。 需要注意的是alphaalpha与betabeta均为向量,针对输入的channelschannels进行的处理,因此不能简单的认定为一个floatfloat的实数。

三,具体实现该部分将结合源码实现解析scale层:

在Caffe proto中ScaleParameter中对Scale有如下几个参数:

1,基本成员变量,基本成员变量主要包含了Bias层的参数以及Scale层完成对应通道的标注工作。

2,基本成员函数,主要包含了LayerSetup,Reshape ,Forward和Backward ,内部调用的时候bias_term为true的时候会调用biasLayer的相关函数。

3,Reshape 调整输入输出与中间变量,Reshape层完成许多中间变量的size初始化。

4,Forward 前向计算,前向计算,在BN中国紧跟着BN的归一化输出,完成乘以alpha与+bias的操作,由于alpha与bias均为C的向量,因此需要先进行广播。

5,Backward 反向计算,主要求解三个梯度,对alpha 、beta和输入的bottom(此处的temp)。

一.公式

二.源码

2.1 层参数定义

BatchNorm层有3个参数:
①use_global_stats:在训练时设置为false(因为训练时,BN的作用对象是batch,而不是整个数据集),测试时设置为true;当为false 时批处理规范化使用当前batch的均值和标准差,采用滑动平均计算新的均值和方差;
为true时,强制使用模型中存储的BatchNorm层保存的全局均值与方差参数。 ②moving_average_fraction:滑动平均的系数。用来在训练阶段计算更新全局均值和标准差。 ③eps:公式中的小量,防止除以0 message BatchNormParameter { optional
bool use_global_stats = 1; optional float moving_average_fraction = 2 [default = .999]; optional float eps = 3 [default = 1e-5]; } Scale层参数: ①axis:处理维度 ②FillerParameter:filler均值和方差的填充方式 ③bias_term:偏置项,是否学习bias(b):y=ax+b ④FillerParameter:bias_filler偏差的初始填充方式 message ScaleParameter { optional int32 axis = 1 [default = 1]; optional int32 num_axes = 2 [default = 1]; optional FillerParameter filler = 3; optional bool bias_term = 4 [default = false]; optional FillerParameter bias_filler = 5; }

2.2 BatchNorm层
(1)LayerSetUp模块

template <typename Dtype>
void BatchNormLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  //获取BatchNormParameter参数
  BatchNormParameter param = this->layer_param_.batch_norm_param();
  //获取moving_average_fraction参数列表
  moving_average_fraction_ = param.moving_average_fraction();
  use_global_stats_ = this->phase_ == TEST;
  //如果参数列表里面定义了use_global_stats,则从参数列表获取
  if (param.has_use_global_stats())
    use_global_stats_ = param.use_global_stats();
  //计算channels_
  if (bottom[0]->num_axes() == 1)
    channels_ = 1;
  else
    channels_ = bottom[0]->shape(1);
  //获取参数列表里的eps参数
  eps_ = param.eps();
  if (this->blobs_.size() > 0) {
    LOG(INFO) << "Skipping parameter initialization";
  } else {
   //初始化3个blob
   //前两个blob[0][1]的大小为channels_,第三个blob[2]的大小为1
    this->blobs_.resize(3);
    vector<int> sz;
    //将channels_保存到sz中
    sz.push_back(channels_);
    this->blobs_[0].reset(new Blob<Dtype>(sz));
    this->blobs_[1].reset(new Blob<Dtype>(sz));
    sz[0] = 1;
    this->blobs_[2].reset(new Blob<Dtype>(sz));
    for (int i = 0; i < 3; ++i) {
      caffe_set(this->blobs_[i]->count(), Dtype(0),
                this->blobs_[i]->mutable_cpu_data());
    }
  }
  // Mask statistics from optimization by setting local learning rates
  // for mean, variance, and the bias correction to zero.
  for (int i = 0; i < this->blobs_.size(); ++i) {
    if (this->layer_param_.param_size() == i) {
    //新增参数
      ParamSpec* fixed_param_spec = this->layer_param_.add_param();
      fixed_param_spec->set_lr_mult(0.f);
    } else {
      CHECK_EQ(this->layer_param_.param(i).lr_mult(), 0.f)
          << "Cannot configure batch normalization statistics as layer "
          << "parameters.";
    }
  }
}

(2)Reshape模块

template <typename Dtype>
void BatchNormLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  if (bottom[0]->num_axes() >= 1)
    CHECK_EQ(bottom[0]->shape(1), channels_);
  //输出形状和输入形状相同
  top[0]->ReshapeLike(*bottom[0]);

  vector<int> sz;
  sz.push_back(channels_);
  //初始化mean_,variance_,temp_,x_norm_,batch_sum_multiplier_
  mean_.Reshape(sz);//通道数,即channel值大小,存储的是均值
  variance_.Reshape(sz);//通道数,即channel值大小,存储的是方差值
  temp_.ReshapeLike(*bottom[0]);//temp_中存储的是减去mean_后的每一个数的方差值。
  x_norm_.ReshapeLike(*bottom[0]);
  sz[0] = bottom[0]->shape(0);
  batch_sum_multiplier_.Reshape(sz);//batch_size 大小  
  //定义spatial_sum_multiplier_的形状
  int spatial_dim = bottom[0]->count()/(channels_*bottom[0]->shape(0));//图像height*width
  if (spatial_sum_multiplier_.num_axes() == 0 ||
      spatial_sum_multiplier_.shape(0) != spatial_dim) {
    sz[0] = spatial_dim;
    spatial_sum_multiplier_.Reshape(sz);
    //multiplier_data=spatial_dim
    Dtype* multiplier_data = spatial_sum_multiplier_.mutable_cpu_data(); //分配一副图像的空间  
    //初始化spatial_sum_multiplier中的值为1*multiplier_data即saptial_dim
    caffe_set(spatial_sum_multiplier_.count(), Dtype(1), multiplier_data); //初始化值为 1,
  }
 //初始化num_by_chans_ = channels_*bottom[0]->shape(0)
  int numbychans = channels_*bottom[0]->shape(0); //batch_size*channel  
  if (num_by_chans_.num_axes() == 0 ||
      num_by_chans_.shape(0) != numbychans) {
    sz[0] = numbychans;
    num_by_chans_.Reshape(sz);
    //初始化batch_sum_multiplier_值为1  batch_sum_multiplier_ batch_size大小的空间,也是辅助在计算mean_时,将所要图像的相应的通道值相加。
    caffe_set(batch_sum_multiplier_.count(), Dtype(1),
        batch_sum_multiplier_.mutable_cpu_data()); //分配空间,初始化为 1,分配空间,初始化为 1,
  }
}

(3)Forward_cpu模块

template <typename Dtype>
void BatchNormLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  //输入blob:bottom_data
  const Dtype* bottom_data = bottom[0]->cpu_data();
  //输出blob:top_data
  Dtype* top_data = top[0]->mutable_cpu_data();
  //batch的数量N(num)*C*H*W
  int num = bottom[0]->shape(0);
  //N*C*H*W/N*C=H*W,即spatial_dim=H*W
  int spatial_dim = bottom[0]->count()/(bottom[0]->shape(0)*channels_);

  if (bottom[0] != top[0]) {
  //如果bottom和top的值不相等,则把bottom的值赋给top
    caffe_copy(bottom[0]->count(), bottom_data, top_data);
  }

  if (use_global_stats_) {
   //如果使用已经计算好的mean和variance
   //mean保存在blobs_[0]中,variance保存在blobs_[1]中
    const Dtype scale_factor = this->blobs_[2]->cpu_data()[0] == 0 ?
        0 : 1 / this->blobs_[2]->cpu_data()[0];
    caffe_cpu_scale(variance_.count(), scale_factor,
        this->blobs_[0]->cpu_data(), mean_.mutable_cpu_data());
    caffe_cpu_scale(variance_.count(), scale_factor,
        this->blobs_[1]->cpu_data(), variance_.mutable_cpu_data());
  } else {
   //否则需要自己计算均值和方差
    // 最终num_by_chans_=channels_*spatial_dim
    //num_by_chans_=1./(num*spatial_dim) * bottom_data *spatial_sum_multiplier_
    //bottom_data=num*channels_*(spatial_dim),即N*C*(H*W)
    //spatial_sum_multiplier_=spatial_dim
    caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim,
        1. / (num * spatial_dim), bottom_data,
        spatial_sum_multiplier_.cpu_data(), 0.,
        num_by_chans_.mutable_cpu_data());
    //计算均值mean_=num_by_chans_*batch_sum_multiplier
    caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
        num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
        mean_.mutable_cpu_data());
  }

  // subtract mean
  //num_by_chans=1*batch_sum_multiplier_*mean_=channels*spatial_dim=mean_
  caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
      batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0.,
      num_by_chans_.mutable_cpu_data());
  //top_data=top_data - num_by_chans_*spatial_sum_multiplier_
  //=top_data-mean_*spatial_dim=(x-E(x))^2
  //=top_data-channels_*spatial_dim*spatial_dim
  caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num,
      spatial_dim, 1, -1, num_by_chans_.cpu_data(),
      spatial_sum_multiplier_.cpu_data(), 1., top_data);

  if (!use_global_stats_) {
    // compute variance using var(X) = E((X-EX)^2)
    //将top_data的值保存到temp_中
    caffe_sqr<Dtype>(top[0]->count(), top_data,
                     temp_.mutable_cpu_data());  // (X-EX)^2
    caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim,
        1. / (num * spatial_dim), temp_.cpu_data(),
        spatial_sum_multiplier_.cpu_data(), 0.,
        num_by_chans_.mutable_cpu_data());
    caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
        num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
        variance_.mutable_cpu_data());  // E((X_EX)^2)

    // compute and save moving average
    //blobs_[2]=(moving_average_fraction_*blobs_[2])+1
    this->blobs_[2]->mutable_cpu_data()[0] *= moving_average_fraction_;
    this->blobs_[2]->mutable_cpu_data()[0] += 1;
    //blobs_[0]=1*mean_+moving_average_fraction_*blobs_[0]
    caffe_cpu_axpby(mean_.count(), Dtype(1), mean_.cpu_data(),
        moving_average_fraction_, this->blobs_[0]->mutable_cpu_data());
    int m = bottom[0]->count()/channels_;
    Dtype bias_correction_factor = m > 1 ? Dtype(m)/(m-1) : 1;
    caffe_cpu_axpby(variance_.count(), bias_correction_factor,
        variance_.cpu_data(), moving_average_fraction_,
        this->blobs_[1]->mutable_cpu_data());
  }

  // normalize variance
  //计算variances_=variance_+eps_
  caffe_add_scalar(variance_.count(), eps_, variance_.mutable_cpu_data());
  //求根号:公式中的分母
  caffe_sqrt(variance_.count(), variance_.cpu_data(),
             variance_.mutable_cpu_data());

  // replicate variance to input size
  //扩展variance到输入的每个batch上
  caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
      batch_sum_multiplier_.cpu_data(), variance_.cpu_data(), 0.,
      num_by_chans_.mutable_cpu_data());
  caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num,
      spatial_dim, 1, 1., num_by_chans_.cpu_data(),
      spatial_sum_multiplier_.cpu_data(), 0., temp_.mutable_cpu_data());
  //top_data=top_data/temp_,即公式(1)
  caffe_div(temp_.count(), top_data, temp_.cpu_data(), top_data);
  // TODO(cdoersch): The caching is only needed because later in-place layers
  //                 might clobber the data.  Can we skip this if they won't?
  //将最终计算结果保存在x_norm_中,在反向传播时调用
  caffe_copy(x_norm_.count(), top_data,
      x_norm_.mutable_cpu_data());
}

(4)Backward_cpu模块
反向传播公式推导:(来自论文)

template <typename Dtype>
void BatchNormLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  const Dtype* top_diff;
  if (bottom[0] != top[0]) {
    top_diff = top[0]->cpu_diff();
  } else {
    caffe_copy(x_norm_.count(), top[0]->cpu_diff(), x_norm_.mutable_cpu_diff());
    top_diff = x_norm_.cpu_diff();
  }
  Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
  if (use_global_stats_) {
    caffe_div(temp_.count(), top_diff, temp_.cpu_data(), bottom_diff);
    return;
  }
  const Dtype* top_data = x_norm_.cpu_data();
  int num = bottom[0]->shape()[0];
  int spatial_dim = bottom[0]->count()/(bottom[0]->shape(0)*channels_);
  // if Y = (X-mean(X))/(sqrt(var(X)+eps)), then
  //
  // dE(Y)/dX =
  //   (dE/dY - mean(dE/dY) - mean(dE/dY cdot Y) cdot Y)
  //     ./ sqrt(var(X) + eps)
  //
  // where cdot and ./ are hadamard product and elementwise division,
  // respectively, dE/dY is the top diff, and mean/var/sum are all computed
  // along all dimensions except the channels dimension.  In the above
  // equation, the operations allow for expansion (i.e. broadcast) along all
  // dimensions except the channels dimension where required.

  // sum(dE/dY cdot Y)
  caffe_mul(temp_.count(), top_data, top_diff, bottom_diff);
  caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim, 1.,
      bottom_diff, spatial_sum_multiplier_.cpu_data(), 0.,
      num_by_chans_.mutable_cpu_data());
  caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
      num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
      mean_.mutable_cpu_data());

  // reshape (broadcast) the above
  caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
      batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0.,
      num_by_chans_.mutable_cpu_data());
  caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num,
      spatial_dim, 1, 1., num_by_chans_.cpu_data(),
      spatial_sum_multiplier_.cpu_data(), 0., bottom_diff);

  // sum(dE/dY cdot Y) cdot Y
  caffe_mul(temp_.count(), top_data, bottom_diff, bottom_diff);

  // sum(dE/dY)-sum(dE/dY cdot Y) cdot Y
  caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim, 1.,
      top_diff, spatial_sum_multiplier_.cpu_data(), 0.,
      num_by_chans_.mutable_cpu_data());
  caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
      num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
      mean_.mutable_cpu_data());
  // reshape (broadcast) the above to make
  // sum(dE/dY)-sum(dE/dY cdot Y) cdot Y
  caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
      batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0.,
      num_by_chans_.mutable_cpu_data());
  caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num * channels_,
      spatial_dim, 1, 1., num_by_chans_.cpu_data(),
      spatial_sum_multiplier_.cpu_data(), 1., bottom_diff);

  // dE/dY - mean(dE/dY)-mean(dE/dY cdot Y) cdot Y
  caffe_cpu_axpby(temp_.count(), Dtype(1), top_diff,
      Dtype(-1. / (num * spatial_dim)), bottom_diff);

  // note: temp_ still contains sqrt(var(X)+eps), computed during the forward
  // pass.
  caffe_div(temp_.count(), bottom_diff, temp_.cpu_data(), bottom_diff);
}

2.3 Scale层
Scale层主要完成top(y)=alpha*bottom(x)+beta
反向传播求导:∂y∂x=alpha;∂y∂alpha=x;∂y∂beta=1∂y∂x=alpha;∂y∂alpha=x;∂y∂beta=1
(1)LayerSetUp层

template <typename Dtype>
void ScaleLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  //获取scale层参数列表
  const ScaleParameter& param = this->layer_param_.scale_param();
  if (bottom.size() == 1 && this->blobs_.size() > 0) {
    LOG(INFO) << "Skipping parameter initialization";
  } else if (bottom.size() == 1) {
    // scale is a learned parameter; initialize it
    axis_ = bottom[0]->CanonicalAxisIndex(param.axis());
    const int num_axes = param.num_axes();
    CHECK_GE(num_axes, -1) << "num_axes must be non-negative, "
                           << "or -1 to extend to the end of bottom[0]";
    if (num_axes >= 0) {
      CHECK_GE(bottom[0]->num_axes(), axis_ + num_axes)
          << "scale blob's shape extends past bottom[0]'s shape when applied "
          << "starting with bottom[0] axis = " << axis_;
    }
    this->blobs_.resize(1);
    const vector<int>::const_iterator& shape_start =
        bottom[0]->shape().begin() + axis_;
    const vector<int>::const_iterator& shape_end =
        (num_axes == -1) ? bottom[0]->shape().end() : (shape_start + num_axes);
    vector<int> scale_shape(shape_start, shape_end);
    this->blobs_[0].reset(new Blob<Dtype>(scale_shape));
    FillerParameter filler_param(param.filler());
    if (!param.has_filler()) {//填充方式和填充值
      // Default to unit (1) filler for identity operation.
      filler_param.set_type("constant");
      filler_param.set_value(1);
    }
    shared_ptr<Filler<Dtype> > filler(GetFiller<Dtype>(filler_param));
    filler->Fill(this->blobs_[0].get());
  }
  if (param.bias_term()) {//是否需要bias
    LayerParameter layer_param(this->layer_param_);
    layer_param.set_type("Bias");
    BiasParameter* bias_param = layer_param.mutable_bias_param();
    bias_param->set_axis(param.axis());
    if (bottom.size() > 1) {
      bias_param->set_num_axes(bottom[1]->num_axes());
    } else {
      bias_param->set_num_axes(param.num_axes());
    }
    bias_param->mutable_filler()->CopyFrom(param.bias_filler());
    bias_layer_ = LayerRegistry<Dtype>::CreateLayer(layer_param);
    bias_bottom_vec_.resize(1);
    bias_bottom_vec_[0] = bottom[0];
    bias_layer_->SetUp(bias_bottom_vec_, top);
    if (this->blobs_.size() + bottom.size() < 3) {
      // case: blobs.size == 1 && bottom.size == 1
      // or blobs.size == 0 && bottom.size == 2
      bias_param_id_ = this->blobs_.size();
      this->blobs_.resize(bias_param_id_ + 1);
      this->blobs_[bias_param_id_] = bias_layer_->blobs()[0];
    } else {
      // bias param already initialized
      bias_param_id_ = this->blobs_.size() - 1;
      bias_layer_->blobs()[0] = this->blobs_[bias_param_id_];
    }
    bias_propagate_down_.resize(1, false);
  }
  this->param_propagate_down_.resize(this->blobs_.size(), true);
}

(2)Reshape层

template <typename Dtype>
void ScaleLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  //获取scale层参数列表
  const ScaleParameter& param = this->layer_param_.scale_param();
  Blob<Dtype>* scale = (bottom.size() > 1) ? bottom[1] : this->blobs_[0].get();
  axis_ = (scale->num_axes() == 0) ?
      0 : bottom[0]->CanonicalAxisIndex(param.axis());
  CHECK_GE(bottom[0]->num_axes(), axis_ + scale->num_axes())
      << "scale blob's shape extends past bottom[0]'s shape when applied "
      << "starting with bottom[0] axis = " << axis_;
  for (int i = 0; i < scale->num_axes(); ++i) {
  //维度保持相同
    CHECK_EQ(bottom[0]->shape(axis_ + i), scale->shape(i))
        << "dimension mismatch between bottom[0]->shape(" << axis_ + i
        << ") and scale->shape(" << i << ")";
  }
  outer_dim_ = bottom[0]->count(0, axis_);//N
  scale_dim_ = scale->count();//C
  inner_dim_ = bottom[0]->count(axis_ + scale->num_axes());//H*W
  if (bottom[0] == top[0]) {  // in-place computation同址运算
    temp_.ReshapeLike(*bottom[0]);
  } else {//若输入与输出大小不等,则将输入的值赋给输出
    top[0]->ReshapeLike(*bottom[0]);
  }
  sum_result_.Reshape(vector<int>(1, outer_dim_ * scale_dim_));
  const int sum_mult_size = std::max(outer_dim_, inner_dim_);
  sum_multiplier_.Reshape(vector<int>(1, sum_mult_size));
  if (sum_multiplier_.cpu_data()[sum_mult_size - 1] != Dtype(1)) {
    caffe_set(sum_mult_size, Dtype(1), sum_multiplier_.mutable_cpu_data());
  }
  if (bias_layer_) {
    bias_bottom_vec_[0] = top[0];
    bias_layer_->Reshape(bias_bottom_vec_, top);
  }
}

(3)Forward_cpu模块

template <typename Dtype>
void ScaleLayer<Dtype>::Forward_cpu(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  if (bottom[0] == top[0]) {
    // In-place computation; need to store bottom data before overwriting it.
    // Note that this is only necessary for Backward; we could skip this if not
    // doing Backward, but Caffe currently provides no way of knowing whether
    // we'll need to do Backward at the time of the Forward call.
    caffe_copy(bottom[0]->count(), bottom[0]->cpu_data(),
               temp_.mutable_cpu_data());
  }
  const Dtype* scale_data =
      ((bottom.size() > 1) ? bottom[1] : this->blobs_[0].get())->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();
  for (int n = 0; n < outer_dim_; ++n) {
    for (int d = 0; d < scale_dim_; ++d) {
      const Dtype factor = scale_data[d];
      caffe_cpu_scale(inner_dim_, factor, bottom_data, top_data);
      bottom_data += inner_dim_;
      top_data += inner_dim_;
    }
  }
  if (bias_layer_) {
    bias_layer_->Forward(bias_bottom_vec_, top);
  }
}

(4)Backward_cpu模块

template <typename Dtype>
void ScaleLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
  if (bias_layer_ &&
      this->param_propagate_down_[this->param_propagate_down_.size() - 1]) {
    bias_layer_->Backward(top, bias_propagate_down_, bias_bottom_vec_);
  }
  const bool scale_param = (bottom.size() == 1);
  Blob<Dtype>* scale = scale_param ? this->blobs_[0].get() : bottom[1];
  if ((!scale_param && propagate_down[1]) ||
      (scale_param && this->param_propagate_down_[0])) {
    const Dtype* top_diff = top[0]->cpu_diff();
    const bool in_place = (bottom[0] == top[0]);
    const Dtype* bottom_data = (in_place ? &temp_ : bottom[0])->cpu_data();
    // Hack: store big eltwise product in bottom[0] diff, except in the special
    // case where this layer itself does the eltwise product, in which case we
    // can store it directly in the scale diff, and we're done.
    // If we're computing in-place (and not doing eltwise computation), this
    // hack doesn't work and we store the product in temp_.
    const bool is_eltwise = (bottom[0]->count() == scale->count());
    Dtype* product = (is_eltwise ? scale->mutable_cpu_diff() :
        (in_place ? temp_.mutable_cpu_data() : bottom[0]->mutable_cpu_diff()));
    caffe_mul(top[0]->count(), top_diff, bottom_data, product);
    if (!is_eltwise) {
      Dtype* sum_result = NULL;
      if (inner_dim_ == 1) {
        sum_result = product;
      } else if (sum_result_.count() == 1) {
        const Dtype* sum_mult = sum_multiplier_.cpu_data();
        Dtype* scale_diff = scale->mutable_cpu_diff();
        if (scale_param) {
          Dtype result = caffe_cpu_dot(inner_dim_, product, sum_mult);
          *scale_diff += result;
        } else {
          *scale_diff = caffe_cpu_dot(inner_dim_, product, sum_mult);
        }
      } else {
        const Dtype* sum_mult = sum_multiplier_.cpu_data();
        sum_result = (outer_dim_ == 1) ?
            scale->mutable_cpu_diff() : sum_result_.mutable_cpu_data();
        caffe_cpu_gemv(CblasNoTrans, sum_result_.count(), inner_dim_,
                       Dtype(1), product, sum_mult, Dtype(0), sum_result);
      }
      if (outer_dim_ != 1) {
        const Dtype* sum_mult = sum_multiplier_.cpu_data();
        Dtype* scale_diff = scale->mutable_cpu_diff();
        if (scale_dim_ == 1) {
          if (scale_param) {
            Dtype result = caffe_cpu_dot(outer_dim_, sum_mult, sum_result);
            *scale_diff += result;
          } else {
            *scale_diff = caffe_cpu_dot(outer_dim_, sum_mult, sum_result);
          }
        } else {
          caffe_cpu_gemv(CblasTrans, outer_dim_, scale_dim_,
                         Dtype(1), sum_result, sum_mult, Dtype(scale_param),
                         scale_diff);
        }
      }
    }
  }
  if (propagate_down[0]) {
    const Dtype* top_diff = top[0]->cpu_diff();
    const Dtype* scale_data = scale->cpu_data();
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
    for (int n = 0; n < outer_dim_; ++n) {
      for (int d = 0; d < scale_dim_; ++d) {
        const Dtype factor = scale_data[d];
        caffe_cpu_scale(inner_dim_, factor, top_diff, bottom_diff);
        bottom_diff += inner_dim_;
        top_diff += inner_dim_;
      }
    }
  }
}

2.4 caffe中BN层的使用
BN层的设定一般是按照Conv->BatchNorm->Scale->ReLu的顺序,需要注意的是caffe实现中的use_global_stats参数在训练时设置为false,在测试时设置为true,因为在训练时,bn的作用对象是一个batch_size,而不是整个训练数据集,如果没有将其设置为false,有可能会造成bn后数据更加偏离中心点,导致训练loss出现NAN或87.3365的问题。如果没有设置use_global_stats参数,caffe会自动匹配该值:true/false。

layer {  
    name: "conv"  
    type: "Convolution"  
    bottom: "data"  
    top: "conv"  
    param{  
        lr_mult:1  
        decay_mult:1  
    }  
    param{  
        lr_mult:2  
        decay_mult:0  
    }  
    convolution_param{  
        num_output:32  
        kernel_size:5  
        weight_filler{  
            type:"xavier"  
        }  
        bias_filler{  
            type:"constant"  
        }  
    }  
}  
layer {    
  name: "BatchNorm"    
  type: "BatchNorm"   
  bottom: "conv"    
  top: "conv1"     
  param {    
    lr_mult: 0    
    decay_mult: 0    
  }     
  param {    
    lr_mult: 0    
    decay_mult: 0    
  }    
  param {    
    lr_mult: 0    
    decay_mult: 0    
  }  
}    

layer {    
  name: "scale"    
  type: "Scale"  
  bottom: "conv1"    
  top: "conv2"      
  scale_param {    
    bias_term: true    
  }    
}   
layer{  
    name:"relu1"  
    type:"ReLU"  
    bottom:"conv2"  
    top:"conv3"  
} 
原文地址:https://www.cnblogs.com/Glucklichste/p/13211549.html