dp斜率优化

算法-dp斜率优化

前置知识:

凸包


斜率优化很玄学,凭空讲怎么也讲不好,所以放例题。


[APIO2014]序列分割

[APIO2014]序列分割

给你一个长度为 (n) 的序列 (a_1,a_2,...,a_n)。你可以切 (k) 刀,每一刀可以把某一段序列切成两段,然后获得两段和成绩的收益。最后求最大收益和得到最大收益的切割方案。

数据范围:(2le nle 100000,1le klemin{n-1,200},1le a_ile 10000)


首先证明,切的顺序不影响结果。设序列为连着的 (a,b,c) 三段。三段的和分别为 (A,B,C)

如果先切开 (a|b,c) 再切开 (a|b|c),获益为 (A(B+C)+BC=AB+AC+BC)
如果先切开 (a,b|c) 再切开 (a|b|c),获益为 ((A+B)C+AB=AC+BC+AB)

所以以此类推,切割的顺序不影响最终收益大小。


然后开始 ( exttt{dp})(F_{i,j}) 表示前 (i) 个数切 (j) 刀的最大收益,(s_i=sumlimits^i_{j=1}a_j),则有状态转移方程:

[F_{i,j}=max{F_{t,j-1}+s_t(s_i-s_t)}(0le t<i) ]

因为 (F_{i,j}) 只由 (F_{t,j-1}) 推得,所以可以滚动数组 (F),令 (f_j=F_{i,j})(g_j=F_{i,j-1}),那么上式就变成:

[f_i=max{g_t+s_t(s_i-s_t)}(0le t<i) ]

如果直接暴力跑一次 (2) 重循环的 ( exttt{dp})(Theta(n^2k))(color{#357}{ exttt{TLE}}),但你仔细观察 (g_t+s_t(s_i-s_t)) 这个式子,如果有一个 (p(0le p<i)) 满足

[g_p+s_p(s_i-s_p)ge g_t+s_t(s_i-s_t) ]

则推式可得:

[(g_p-s_p^2)-(g_t-s_t^2)ge s_tcdot s_i-s_pcdot s_i ]

[ hereforefrac{(g_p-s_p^2)-(g_t-s_t^2)}{s_t-s_p}ge s_i ]

(slope=frac{(g_p-s_p^2)-(g_t-s_t^2)}{s_t-s_p})

如果把 ((-s_p,g_p-s_p^2))((-s_t,g_t-s_t^2)) 看作平面直角坐标系中的两个点,那么 (slope) 就是这两个点连边的斜率。

因为 ( exttt{dp}) 循环 (i=1 o n)(s_i) 是递增的,而两个点的 (slope) 又不是随 (s_i) 变化的,所以可以维护一个双头单调队列,每次把 (i) 放到队尾,队列满足:

  1. 从左到右数递增。
  2. 从左到右相邻两个数所对应的点连边的斜率递减。

然后维护队列并 ( exttt{dp})

循环 (j=1 o k)

赋值滚动数组 (g=f),清零 (f)
清空队列并在队列中加入 (0)(相当于原点)。
循环 (i=1 o n)

把队列头相邻两个数 (slopele s_i) 的踢掉。
取队列头 (p)(f_i=g_p+s_p(s_i-s_p))
因为最终要输出方案,所以记录索引 (pro_{i,j}=p)
(i) 看作点 ((-s_i,g_i-s_i^2)),如果队尾相邻元素的 (slopege i) 和队尾元素的 (slope),就把队尾元素踢掉。
队尾加入 (i)

然后在单调队列和斜率优化的加持下,因为维护队列和循环 ( exttt{dp}) 的总时间复杂度为 (Theta(n)), 所以总的时间复杂度缩减为 (Theta(nk))。于是蒟蒻逃脱了 (color{#357}{ exttt{TLE}}) 的风险。


Code:

#include <bits/stdc++.h>
using namespace std;
/*
{a},{b},{c}
a(b+c)+bc=ab+ac+bc-Greatitude
(a+b)c+ab=ac+bc+ab/-/
*/
#define lng long long
const int N=1e5+10,K=210;
int n,k,a[N],q[N],p[N][K]; //n,k,ai,queue,方案路径
lng f[N],g[N],sum[N]; //fi,gt,si

double funct(int x,int y){ //两个点的slope
	if(sum[x]==sum[y]) return -1e16;
	return 1.0*((g[x]-sum[x]*sum[x])-(g[y]-sum[y]*sum[y]))/(sum[y]-sum[x]);
}
int main(){
	scanf("%d%d",&n,&k);
	for(int i=1;i<=n;i++)
		scanf("%d",a+i),sum[i]=sum[i-1]+a[i];
	for(int j=1;j<=k;j++){ //维护单调队列+dp
		for(int i=1;i<=n;i++) g[i]=f[i],f[i]=0;
		int l=1,r=0; 
		q[++r]=0;
		for(int i=1;i<=n;i++){
			while(l<r&&funct(q[l],q[l+1])<=sum[i]) l++;
			f[i]=g[q[l]]+sum[q[l]]*(sum[i]-sum[q[l]]);
			p[i][j]=q[l];
			while(l<r&&funct(q[r-1],q[r])>=funct(q[r],i)) r--;
			q[++r]=i;
		}
	}
	printf("%lld
",f[n]); //输出最终最大收益
	for(int i=k,j=n;i>=1;i--)
		printf("%d%c",j=p[j][i],"
 "[i>1]); //输出切割方案。
	return 0;
}

祝大家学习愉快!

原文地址:https://www.cnblogs.com/George1123/p/12586517.html