Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,log,Gamma)

0.1Bearbeiten
{displaystyle int _{0}^{1}log Gamma (x)\,dx=log {sqrt {2pi }}}{displaystyle int _{0}^{1}log Gamma (x)\,dx=log {sqrt {2pi }}}
1. Beweis

{displaystyle 2int _{0}^{1}log Gamma (x)\,dx=int _{0}^{1}log Gamma (x)\,dx+int _{0}^{1}log Gamma (1-x)\,dx=int _{0}^{1}log {Big (}Gamma (x)\,Gamma (1-x){Big )}\,dx}{displaystyle 2int _{0}^{1}log Gamma (x)\,dx=int _{0}^{1}log Gamma (x)\,dx+int _{0}^{1}log Gamma (1-x)\,dx=int _{0}^{1}log {Big (}Gamma (x)\,Gamma (1-x){Big )}\,dx}

{displaystyle =int _{0}^{1}log left({frac {pi }{sin pi x}} ight)dx=log pi -int _{0}^{1}log sin pi x\,dx=log pi +log 2\,Rightarrow \,int _{0}^{1}log Gamma (x)\,dx={frac {1}{2}}log(2pi )}{displaystyle =int _{0}^{1}log left({frac {pi }{sin pi x}}
ight)dx=log pi -int _{0}^{1}log sin pi x\,dx=log pi +log 2\,Rightarrow \,int _{0}^{1}log Gamma (x)\,dx={frac {1}{2}}log(2pi )}

2. Beweis

Die Riemannsche Approximationssumme {displaystyle sum _{k=1}^{n-1}log Gamma !left({frac {k}{n}} ight)cdot {frac {1}{n}}}{displaystyle sum _{k=1}^{n-1}log Gamma !left({frac {k}{n}}
ight)cdot {frac {1}{n}}} vereinfacht sich zu

{displaystyle log left(prod _{k=1}^{n-1}Gamma !left({frac {k}{n}} ight) ight)cdot {frac {1}{n}}=log left({frac {{sqrt {2pi }}^{\,n-1}}{sqrt {n}}} ight)cdot {frac {1}{n}}={frac {(n-1)log {sqrt {2pi }}-log {sqrt {n}}}{n}}}{displaystyle log left(prod _{k=1}^{n-1}Gamma !left({frac {k}{n}}
ight)
ight)cdot {frac {1}{n}}=log left({frac {{sqrt {2pi }}^{\,n-1}}{sqrt {n}}}
ight)cdot {frac {1}{n}}={frac {(n-1)log {sqrt {2pi }}-log {sqrt {n}}}{n}}},

und konvergiert daher gegen {displaystyle log {sqrt {2pi }}}{displaystyle log {sqrt {2pi }}} für {displaystyle n o infty \,}n	o infty \,.

 
0.2Bearbeiten
{displaystyle int _{1/4}^{3/4}log Gamma (x)\,dx={frac {1}{2}}left(log {sqrt {2pi }}-{frac {G}{pi }} ight)}{displaystyle int _{1/4}^{3/4}log Gamma (x)\,dx={frac {1}{2}}left(log {sqrt {2pi }}-{frac {G}{pi }}
ight)}
1. Beweis

{displaystyle I:=int _{1/4}^{3/4}log Gamma (x)\,dx=int _{1/4}^{3/4}log Gamma (1-x)\,dx}{displaystyle I:=int _{1/4}^{3/4}log Gamma (x)\,dx=int _{1/4}^{3/4}log Gamma (1-x)\,dx}

{displaystyle Rightarrow \,2I=int _{1/4}^{3/4}log {Big (}Gamma (x)Gamma (1-x){Big )}\,dx=int _{1/4}^{3/4}log left({frac {pi }{sin pi x}} ight)dx={frac {1}{2}}log pi -int _{1/4}^{3/4}log(sin pi x)\,dx}{displaystyle Rightarrow \,2I=int _{1/4}^{3/4}log {Big (}Gamma (x)Gamma (1-x){Big )}\,dx=int _{1/4}^{3/4}log left({frac {pi }{sin pi x}}
ight)dx={frac {1}{2}}log pi -int _{1/4}^{3/4}log(sin pi x)\,dx},

wobei {displaystyle int _{1/4}^{3/4}log(sin pi x)\,dx=int _{-1/4}^{1/4}log(cos pi x)\,dx=2int _{0}^{1/4}log(cos pi x)\,dx}{displaystyle int _{1/4}^{3/4}log(sin pi x)\,dx=int _{-1/4}^{1/4}log(cos pi x)\,dx=2int _{0}^{1/4}log(cos pi x)\,dx} {displaystyle ={frac {1}{pi }}int _{0}^{frac {pi }{2}}log left(cos {frac {x}{2}} ight)dx={frac {G}{pi }}-{frac {1}{2}}log 2}{displaystyle ={frac {1}{pi }}int _{0}^{frac {pi }{2}}log left(cos {frac {x}{2}}
ight)dx={frac {G}{pi }}-{frac {1}{2}}log 2} ist.

Also ist {displaystyle 2I={frac {1}{2}}log(2pi )-{frac {G}{pi }}}{displaystyle 2I={frac {1}{2}}log(2pi )-{frac {G}{pi }}}.

 
1.1Bearbeiten
{displaystyle int _{u}^{u+1}log Gamma (x)\,dx=u\,{Big (}log(u)-1{Big )}+log {sqrt {2pi }}qquad u>0}{displaystyle int _{u}^{u+1}log Gamma (x)\,dx=u\,{Big (}log(u)-1{Big )}+log {sqrt {2pi }}qquad u>0}
Beweis (Raabesche Formel)

{displaystyle int _{u}^{u+1}log Gamma (x)\,dx=int _{0}^{u+1}log Gamma (x)\,dx-int _{0}^{u}log Gamma (x)\,dx}{displaystyle int _{u}^{u+1}log Gamma (x)\,dx=int _{0}^{u+1}log Gamma (x)\,dx-int _{0}^{u}log Gamma (x)\,dx}

{displaystyle =int _{0}^{1}log Gamma (x)\,dx+int _{1}^{u+1}log Gamma (x)\,dx-int _{0}^{u}log Gamma (x)\,dx}{displaystyle =int _{0}^{1}log Gamma (x)\,dx+int _{1}^{u+1}log Gamma (x)\,dx-int _{0}^{u}log Gamma (x)\,dx}

{displaystyle =log {sqrt {2pi }}+int _{0}^{u}log Gamma (x+1)\,dx-int _{0}^{u}log Gamma (x)\,dx}{displaystyle =log {sqrt {2pi }}+int _{0}^{u}log Gamma (x+1)\,dx-int _{0}^{u}log Gamma (x)\,dx}.

Wegen {displaystyle log Gamma (x+1)-log Gamma (x)=log x\,}{displaystyle log Gamma (x+1)-log Gamma (x)=log x\,} ist

{displaystyle int _{0}^{u}log Gamma (x+1)dx-int _{0}^{u}log Gamma (x)dx=u\,{Big (}log(u)-1{Big )}}{displaystyle int _{0}^{u}log Gamma (x+1)dx-int _{0}^{u}log Gamma (x)dx=u\,{Big (}log(u)-1{Big )}}.

原文地址:https://www.cnblogs.com/Eufisky/p/14730823.html