Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,exp,Gamma)

2.1Bearbeiten
{displaystyle {frac {1}{2pi i}}int _{a-iinfty }^{a+iinfty }Gamma (s)\,t^{-s}\,ds=e^{-t}qquad a>0\,,\,{ ext{Re}}(t)>0}{displaystyle {frac {1}{2pi i}}int _{a-iinfty }^{a+iinfty }Gamma (s)\,t^{-s}\,ds=e^{-t}qquad a>0\,,\,{	ext{Re}}(t)>0}
Beweis (Cahen-Mellin Integral)

Diese Formel ergibt sich aus der Mellin-Rücktransformation.

Aus {displaystyle Gamma (s)={mathcal {M}}{ig [}e^{-t}{ig ]}(s)=int _{0}^{infty }e^{-t}\,t^{s-1}\,dt}{displaystyle Gamma (s)={mathcal {M}}{ig [}e^{-t}{ig ]}(s)=int _{0}^{infty }e^{-t}\,t^{s-1}\,dt}

folgt {displaystyle e^{-t}={mathcal {M}}^{-1}[Gamma (s)](t)={frac {1}{2pi i}}int _{a-iinfty }^{a+iinfty }Gamma (s)\,t^{-s}\,ds}{displaystyle e^{-t}={mathcal {M}}^{-1}[Gamma (s)](t)={frac {1}{2pi i}}int _{a-iinfty }^{a+iinfty }Gamma (s)\,t^{-s}\,ds}.

 
2.2Bearbeiten
{displaystyle {frac {1}{2pi i}}int _{-iinfty }^{iinfty }e^{2bix}\,|Gamma (alpha +x)|^{2}\,dx={frac {Gamma (2alpha )}{(2cos b)^{2alpha }}}qquad { ext{Re}}(alpha )>0\,,\,left|{ ext{Re}}(b) ight|<{frac {pi }{2}}}{displaystyle {frac {1}{2pi i}}int _{-iinfty }^{iinfty }e^{2bix}\,|Gamma (alpha +x)|^{2}\,dx={frac {Gamma (2alpha )}{(2cos b)^{2alpha }}}qquad {	ext{Re}}(alpha )>0\,,\,left|{	ext{Re}}(b)
ight|<{frac {pi }{2}}}
 
3.1Bearbeiten
{displaystyle int _{-infty }^{infty }{frac {e^{itx}}{Gamma (mu +x)Gamma ( u -x)}}\,dx=left{{egin{matrix}{frac {left(2cos {frac {t}{2}} ight)^{mu + u -2}}{Gamma (mu + u -1)}}\,e^{-i(mu - u )t/2}&-pi <t<pi \0&{ ext{sonst}}end{matrix}} ight.qquad { ext{Re}}(mu + u )>1}
Beweis

Setze {displaystyle f(t)=left{{egin{matrix}{frac {left(2cos {frac {t}{2}} ight)^{mu + u -2}}{Gamma (mu + u -1)}}\,e^{-i(mu - u )t/2}&-pi <t<pi \0&{ ext{sonst}}end{matrix}} ight.}

und berechne davon die Fouriertransformierte {displaystyle {hat {f}}(x)={frac {1}{sqrt {2pi }}}int _{-infty }^{infty }f(t)e^{-ixt}\,dt}{displaystyle {hat {f}}(x)={frac {1}{sqrt {2pi }}}int _{-infty }^{infty }f(t)e^{-ixt}\,dt}.

Das ist {displaystyle {frac {1}{sqrt {2pi }}}int _{-pi }^{pi }{frac {left(2cos {frac {t}{2}} ight)^{mu + u -2}}{Gamma (mu + u -1)}}\,e^{-i(mu - u )t/2}\,e^{-ixt}\,dt}{displaystyle {frac {1}{sqrt {2pi }}}int _{-pi }^{pi }{frac {left(2cos {frac {t}{2}}
ight)^{mu +
u -2}}{Gamma (mu +
u -1)}}\,e^{-i(mu -
u )t/2}\,e^{-ixt}\,dt}, da {displaystyle f(t)\,}{displaystyle f(t)\,} für {displaystyle |t|geq pi }{displaystyle |t|geq pi } verschwindet.

Und das ist {displaystyle {frac {2}{sqrt {2pi }}}int _{-{frac {pi }{2}}}^{frac {pi }{2}}{frac {left(2cos t ight)^{mu + u -2}}{Gamma (mu + u -1)}}\,e^{-i(mu - u +2x)t}\,dt}{displaystyle {frac {2}{sqrt {2pi }}}int _{-{frac {pi }{2}}}^{frac {pi }{2}}{frac {left(2cos t
ight)^{mu +
u -2}}{Gamma (mu +
u -1)}}\,e^{-i(mu -
u +2x)t}\,dt} nach der Substitution {displaystyle tmapsto 2t}{displaystyle tmapsto 2t}.

Der ungerade Anteil hebt sich auf; somit ist {displaystyle {hat {f}}(x)={frac {2}{sqrt {2pi }}}int _{-{frac {pi }{2}}}^{frac {pi }{2}}{frac {left(2cos t ight)^{mu + u -2}}{Gamma (mu + u -1)}}\,cos(mu - u +2x)t\,dt}{displaystyle {hat {f}}(x)={frac {2}{sqrt {2pi }}}int _{-{frac {pi }{2}}}^{frac {pi }{2}}{frac {left(2cos t
ight)^{mu +
u -2}}{Gamma (mu +
u -1)}}\,cos(mu -
u +2x)t\,dt},

was sich aufgrund der Symmetrie auch als {displaystyle {frac {1}{sqrt {2pi }}}\,{frac {2^{mu + u }}{Gamma (mu + u -1)}}\,int _{0}^{frac {pi }{2}}left(cos t ight)^{mu + u -2}\,cos(mu - u +2x)t\,dt}{displaystyle {frac {1}{sqrt {2pi }}}\,{frac {2^{mu +
u }}{Gamma (mu +
u -1)}}\,int _{0}^{frac {pi }{2}}left(cos t
ight)^{mu +
u -2}\,cos(mu -
u +2x)t\,dt} schreiben lässt.

Nach der Cauchyschen Cosinus-Integralformel {displaystyle int _{0}^{frac {pi }{2}}(cos t)^{alpha -1}\,cos eta t\,dt={frac {pi }{2^{alpha }}}\,{frac {Gamma (alpha )}{Gamma left({frac {alpha +eta -1}{2}} ight)\,Gamma left({frac {alpha +eta -1}{2}} ight)}}}{displaystyle int _{0}^{frac {pi }{2}}(cos t)^{alpha -1}\,cos eta t\,dt={frac {pi }{2^{alpha }}}\,{frac {Gamma (alpha )}{Gamma left({frac {alpha +eta -1}{2}}
ight)\,Gamma left({frac {alpha +eta -1}{2}}
ight)}}} ist nun

{displaystyle {hat {f}}(x)={frac {1}{sqrt {2pi }}}\,{frac {2^{mu + u }}{Gamma (mu + u -1)}}\,{frac {pi }{2^{mu + u -1}}}\,{frac {Gamma (mu + u -1)}{Gamma left({frac {(mu + u -1)+(mu - u +2x)+1}{2}} ight)\,Gamma left({frac {(mu + u -1)-(mu - u +2x)+1}{2}} ight)}}={frac {sqrt {2pi }}{Gamma (mu +x)\,Gamma ( u -x)}}}{displaystyle {hat {f}}(x)={frac {1}{sqrt {2pi }}}\,{frac {2^{mu +
u }}{Gamma (mu +
u -1)}}\,{frac {pi }{2^{mu +
u -1}}}\,{frac {Gamma (mu +
u -1)}{Gamma left({frac {(mu +
u -1)+(mu -
u +2x)+1}{2}}
ight)\,Gamma left({frac {(mu +
u -1)-(mu -
u +2x)+1}{2}}
ight)}}={frac {sqrt {2pi }}{Gamma (mu +x)\,Gamma (
u -x)}}}.

Die behauptete Gleichung ist dann die Rücktransformation {displaystyle {frac {1}{sqrt {2pi }}}int _{-infty }^{infty }{hat {f}}(x)\,e^{itx}\,dx=f(t)}{displaystyle {frac {1}{sqrt {2pi }}}int _{-infty }^{infty }{hat {f}}(x)\,e^{itx}\,dx=f(t)}.

原文地址:https://www.cnblogs.com/Eufisky/p/14730813.html