Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,Ci)

2.1Bearbeiten
{displaystyle int _{0}^{infty }{ ext{Ci}}(ax)\,{ ext{Ci}}(bx)\,dx={frac {1}{max{a,b}}}cdot {frac {pi }{2}}qquad a,b>0}{displaystyle int _{0}^{infty }{	ext{Ci}}(ax)\,{	ext{Ci}}(bx)\,dx={frac {1}{max{a,b}}}cdot {frac {pi }{2}}qquad a,b>0}
Beweis

In der Formel

{displaystyle int { ext{Ci}}(ax)\,{ ext{Ci}}(bx)\,dx=x\,{ ext{Ci}}(ax)\,{ ext{Ci}}(bx)-{frac {sin ax}{a}}\,{ ext{Ci}}(bx)-{frac {sin bx}{b}}\,{ ext{Ci}}(ax)+{frac {1}{2a}}{Big (}{ ext{Si}}(ax+bx)+{ ext{Si}}(ax-bx){Big )}+{frac {1}{2b}}{Big (}{ ext{Si}}(ax+bx)-{ ext{Si}}(ax-bx){Big )}}{displaystyle int {	ext{Ci}}(ax)\,{	ext{Ci}}(bx)\,dx=x\,{	ext{Ci}}(ax)\,{	ext{Ci}}(bx)-{frac {sin ax}{a}}\,{	ext{Ci}}(bx)-{frac {sin bx}{b}}\,{	ext{Ci}}(ax)+{frac {1}{2a}}{Big (}{	ext{Si}}(ax+bx)+{	ext{Si}}(ax-bx){Big )}+{frac {1}{2b}}{Big (}{	ext{Si}}(ax+bx)-{	ext{Si}}(ax-bx){Big )}}

setze {displaystyle 0\,}0\, und {displaystyle infty }infty  als Integrationsgrenzen ein.

Asymptotisch verhalten sich {displaystyle { ext{Ci}}(ax)}{displaystyle {	ext{Ci}}(ax)} und {displaystyle { ext{Ci}}(bx)}{displaystyle {	ext{Ci}}(bx)} für {displaystyle x o 0+}{displaystyle x	o 0+} wie {displaystyle log x}log x und für {displaystyle x o infty \,}x	o infty \, wie {displaystyle {frac {cos x}{x}}}{displaystyle {frac {cos x}{x}}}.

Also sind {displaystyle {Big [}x\,{ ext{Ci}}(ax)\,{ ext{Ci}}(bx){Big ]}_{0}^{infty }\,\,,\,\,{Big [}{frac {sin ax}{a}}\,{ ext{Ci}}(bx){Big ]}_{0}^{infty }\,\,,\,\,{Big [}{frac {sin bx}{b}}\,{ ext{Ci}}(ax){Big ]}_{0}^{infty }}{displaystyle {Big [}x\,{	ext{Ci}}(ax)\,{	ext{Ci}}(bx){Big ]}_{0}^{infty }\,\,,\,\,{Big [}{frac {sin ax}{a}}\,{	ext{Ci}}(bx){Big ]}_{0}^{infty }\,\,,\,\,{Big [}{frac {sin bx}{b}}\,{	ext{Ci}}(ax){Big ]}_{0}^{infty }} jeweils gleich {displaystyle 0-0=0}{displaystyle 0-0=0}.

Der übrige Term {displaystyle left[{frac {1}{2a}}{Big (}{ ext{Si}}(ax+bx)+{ ext{Si}}(ax-bx){Big )}+{frac {1}{2b}}{Big (}{ ext{Si}}(ax+bx)-{ ext{Si}}(ax-bx){Big )} ight]_{0}^{infty }}{displaystyle left[{frac {1}{2a}}{Big (}{	ext{Si}}(ax+bx)+{	ext{Si}}(ax-bx){Big )}+{frac {1}{2b}}{Big (}{	ext{Si}}(ax+bx)-{	ext{Si}}(ax-bx){Big )}
ight]_{0}^{infty }} verschwindet für {displaystyle x=0}x=0.

Für {displaystyle x o infty }{displaystyle x	o infty } geht der Term gegen

{displaystyle ullet quad {frac {1}{2a}}left({frac {pi }{2}}+{frac {pi }{2}} ight)+{frac {1}{2b}}left({frac {pi }{2}}-{frac {pi }{2}} ight)={frac {1}{a}}cdot {frac {pi }{2}}}{displaystyle ullet quad {frac {1}{2a}}left({frac {pi }{2}}+{frac {pi }{2}}
ight)+{frac {1}{2b}}left({frac {pi }{2}}-{frac {pi }{2}}
ight)={frac {1}{a}}cdot {frac {pi }{2}}} falls {displaystyle a>b}{displaystyle a>b}.

{displaystyle ullet quad {frac {1}{2a}}left({frac {pi }{2}}+0 ight)+{frac {1}{2b}}left({frac {pi }{2}}+0 ight)={frac {1}{a}}cdot {frac {pi }{2}}={frac {1}{b}}cdot {frac {pi }{2}}}{displaystyle ullet quad {frac {1}{2a}}left({frac {pi }{2}}+0
ight)+{frac {1}{2b}}left({frac {pi }{2}}+0
ight)={frac {1}{a}}cdot {frac {pi }{2}}={frac {1}{b}}cdot {frac {pi }{2}}} falls {displaystyle a=b}a=b.

{displaystyle ullet quad {frac {1}{2a}}left({frac {pi }{2}}-{frac {pi }{2}} ight)+{frac {1}{2b}}left({frac {pi }{2}}+{frac {pi }{2}} ight)={frac {1}{b}}cdot {frac {pi }{2}}}{displaystyle ullet quad {frac {1}{2a}}left({frac {pi }{2}}-{frac {pi }{2}}
ight)+{frac {1}{2b}}left({frac {pi }{2}}+{frac {pi }{2}}
ight)={frac {1}{b}}cdot {frac {pi }{2}}} falls {displaystyle a<b}a<b.

原文地址:https://www.cnblogs.com/Eufisky/p/14730806.html