Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,exp)

0.1Bearbeiten
{displaystyle int _{-infty }^{infty }e^{-x^{2}}\,dx={sqrt {pi }}}{displaystyle int _{-infty }^{infty }e^{-x^{2}}\,dx={sqrt {pi }}}
1. Beweis

{displaystyle I^{2}=left(int _{-infty }^{infty }e^{-x^{2}}\,dx ight)\,left(int _{-infty }^{infty }e^{-y^{2}}\,dy ight)=int _{-infty }^{infty }int _{-infty }^{infty }e^{-(x^{2}+y^{2})}\,dx\,dy}{displaystyle I^{2}=left(int _{-infty }^{infty }e^{-x^{2}}\,dx
ight)\,left(int _{-infty }^{infty }e^{-y^{2}}\,dy
ight)=int _{-infty }^{infty }int _{-infty }^{infty }e^{-(x^{2}+y^{2})}\,dx\,dy}

lässt sich in Polarkoordinaten schreiben als {displaystyle int _{0}^{2pi }int _{0}^{infty }e^{-r^{2}}\,r\,dr\,dvarphi }{displaystyle int _{0}^{2pi }int _{0}^{infty }e^{-r^{2}}\,r\,dr\,dvarphi }.

Und das ist {displaystyle int _{0}^{2pi }left[-{frac {e^{-r^{2}}}{2}} ight]_{0}^{infty }\,dvarphi =int _{0}^{2pi }{frac {1}{2}}\,dvarphi =pi Rightarrow I={sqrt {pi }}}{displaystyle int _{0}^{2pi }left[-{frac {e^{-r^{2}}}{2}}
ight]_{0}^{infty }\,dvarphi =int _{0}^{2pi }{frac {1}{2}}\,dvarphi =pi Rightarrow I={sqrt {pi }}}.

2. Beweis

Die Fläche, die entsteht wenn {displaystyle f(x)=e^{-x^{2}}}{displaystyle f(x)=e^{-x^{2}}} um die z-Achse rotiert, schließt mit der xy-Ebene das gleiche Volumen ein

wie die Fläche, die entsteht, wenn {displaystyle f^{-1}(x)={sqrt {-log x}}}{displaystyle f^{-1}(x)={sqrt {-log x}}} um die x-Achse rotiert, mit der yz-Ebene.

Also {displaystyle I^{2}=pi int _{0}^{1}{sqrt {-log x}}^{\,2}\,dx=pi Rightarrow I={sqrt {pi }}}{displaystyle I^{2}=pi int _{0}^{1}{sqrt {-log x}}^{\,2}\,dx=pi Rightarrow I={sqrt {pi }}}.

3. Beweis

Definiert man {displaystyle F(x)=left(int _{0}^{x}e^{-t^{2}}\,dt ight)^{2}}{displaystyle F(x)=left(int _{0}^{x}e^{-t^{2}}\,dt
ight)^{2}} und {displaystyle G(x)=int _{0}^{1}{frac {e^{-x^{2}\,(1+t^{2})}}{1+t^{2}}}\,dt}{displaystyle G(x)=int _{0}^{1}{frac {e^{-x^{2}\,(1+t^{2})}}{1+t^{2}}}\,dt}, so ist {displaystyle F'(x)=2\,int _{0}^{x}e^{-t^{2}}\,dt;e^{-x^{2}}}{displaystyle F'(x)=2\,int _{0}^{x}e^{-t^{2}}\,dt;e^{-x^{2}}}

und {displaystyle G'(x)=int _{0}^{1}e^{-x^{2}\,(1+t^{2})}\,(-2x)\,dt=-2\,int _{0}^{1}e^{-x^{2}\,t^{2}}\,x\,dt;e^{-x^{2}}=-2int _{0}^{x}e^{-t^{2}}\,dt;e^{-x^{2}}}{displaystyle G'(x)=int _{0}^{1}e^{-x^{2}\,(1+t^{2})}\,(-2x)\,dt=-2\,int _{0}^{1}e^{-x^{2}\,t^{2}}\,x\,dt;e^{-x^{2}}=-2int _{0}^{x}e^{-t^{2}}\,dt;e^{-x^{2}}}.

Es ist also {displaystyle F'(x)+G'(x)=0\,}{displaystyle F'(x)+G'(x)=0\,}. Folglich muss {displaystyle F(x)+G(x)\,}{displaystyle F(x)+G(x)\,} konstant sein.

{displaystyle F(infty )+G(infty )=F(0)+G(0)Rightarrow left({frac {I}{2}} ight)^{2}+0=0+{frac {pi }{4}}Rightarrow I={sqrt {pi }}}{displaystyle F(infty )+G(infty )=F(0)+G(0)Rightarrow left({frac {I}{2}}
ight)^{2}+0=0+{frac {pi }{4}}Rightarrow I={sqrt {pi }}}

4. Beweis

Es sei {displaystyle a={sqrt {ipi }}=(1+i){sqrt {frac {pi }{2}}}}{displaystyle a={sqrt {ipi }}=(1+i){sqrt {frac {pi }{2}}}} und {displaystyle f(z)={frac {e^{-z^{2}}}{1+e^{-2az}}}}{displaystyle f(z)={frac {e^{-z^{2}}}{1+e^{-2az}}}}Gaussintegralberechnung.PNG

Wegen {displaystyle { ext{Re}}(a)>0\,}{displaystyle {	ext{Re}}(a)>0\,} gilt {displaystyle e^{-2ax} o left{{egin{matrix}0&,&x o infty \infty &,&x o -infty end{matrix}} ight.}{displaystyle e^{-2ax}	o left{{egin{matrix}0&,&x	o infty \infty &,&x	o -infty end{matrix}}
ight.}.

Ist {displaystyle 0leq yleq {sqrt {frac {pi }{2}}}}{displaystyle 0leq yleq {sqrt {frac {pi }{2}}}}, so geht für {displaystyle x o pm infty \,}{displaystyle x	o pm infty \,} der Nenner von {displaystyle f(x+iy)={frac {e^{-x^{2}}\,e^{y^{2}-2ixy}}{1+e^{-2ax}\,e^{-2iay}}}}{displaystyle f(x+iy)={frac {e^{-x^{2}}\,e^{y^{2}-2ixy}}{1+e^{-2ax}\,e^{-2iay}}}} gegen {displaystyle 1\,}1\, oder {displaystyle infty \,}{displaystyle infty \,}

und der Zähler geht gegen Null. Also verschwinden die beiden Integrale {displaystyle int _{pm R}^{pm R+a}\,f\,dz}{displaystyle int _{pm R}^{pm R+a}\,f\,dz} für {displaystyle R o infty \,}R	o infty \,.

Wegen {displaystyle f(z)-f(z+a)=e^{-z^{2}}}{displaystyle f(z)-f(z+a)=e^{-z^{2}}} gilt nun {displaystyle int _{-infty }^{infty }e^{-z^{2}}\,dz=lim _{R o infty }oint f\,dz=2pi i\,{ ext{res}}left(f,{frac {a}{2}} ight)={sqrt {pi }}}{displaystyle int _{-infty }^{infty }e^{-z^{2}}\,dz=lim _{R	o infty }oint f\,dz=2pi i\,{	ext{res}}left(f,{frac {a}{2}}
ight)={sqrt {pi }}}.

 
0.2Bearbeiten
{displaystyle int _{0}^{infty }left({frac {1}{e^{x}-1}}-{frac {1}{x\,e^{x}}} ight)\,dx=gamma }{displaystyle int _{0}^{infty }left({frac {1}{e^{x}-1}}-{frac {1}{x\,e^{x}}}
ight)\,dx=gamma }
Beweis

Für {displaystyle { ext{Re}}(z)>1\,}{displaystyle {	ext{Re}}(z)>1\,} gilt {displaystyle int _{0}^{infty }left({frac {x^{z-1}}{e^{x}-1}}-{frac {x^{z-1}}{x\,e^{x}}} ight)\,dx=Gamma (z)\,left(zeta (z)-{frac {1}{z-1}} ight) o gamma }{displaystyle int _{0}^{infty }left({frac {x^{z-1}}{e^{x}-1}}-{frac {x^{z-1}}{x\,e^{x}}}
ight)\,dx=Gamma (z)\,left(zeta (z)-{frac {1}{z-1}}
ight)	o gamma } für {displaystyle z o 1\,}{displaystyle z	o 1\,}.

 
1.1Bearbeiten
{displaystyle int _{0}^{infty }x^{z-1}e^{-x}\,dx=Gamma (z)qquad { ext{Re}}(z)>0}{displaystyle int _{0}^{infty }x^{z-1}e^{-x}\,dx=Gamma (z)qquad {	ext{Re}}(z)>0}
ohne Beweis
 
1.2Bearbeiten
{displaystyle int _{0}^{infty }exp left(-x^{2}-{frac {alpha ^{2}}{x^{2}}} ight)\,dx={frac {sqrt {pi }}{2}}\,e^{-2alpha }qquad alpha >0}{displaystyle int _{0}^{infty }exp left(-x^{2}-{frac {alpha ^{2}}{x^{2}}}
ight)\,dx={frac {sqrt {pi }}{2}}\,e^{-2alpha }qquad alpha >0}
1. Beweis

{displaystyle 2I=int _{0}^{infty }exp left(-x^{2}-{frac {alpha ^{2}}{x^{2}}} ight)\,dx=int _{-infty }^{infty }exp left(-left(x-{frac {alpha }{x}} ight)^{2}-2alpha ight)\,dx=int _{-infty }^{infty }e^{-left(x-{frac {alpha }{x}} ight)^{2}}dxcdot e^{-2alpha }}{displaystyle 2I=int _{0}^{infty }exp left(-x^{2}-{frac {alpha ^{2}}{x^{2}}}
ight)\,dx=int _{-infty }^{infty }exp left(-left(x-{frac {alpha }{x}}
ight)^{2}-2alpha 
ight)\,dx=int _{-infty }^{infty }e^{-left(x-{frac {alpha }{x}}
ight)^{2}}dxcdot e^{-2alpha }}.

Nach der Formel {displaystyle int _{-infty }^{infty }fleft(x-{frac {b}{x}} ight)dx=int _{-infty }^{infty }f(x)dx}{displaystyle int _{-infty }^{infty }fleft(x-{frac {b}{x}}
ight)dx=int _{-infty }^{infty }f(x)dx}, gilt im Fall {displaystyle f(x)=e^{-x^{2}}}{displaystyle f(x)=e^{-x^{2}}},

{displaystyle int _{-infty }^{infty }e^{-left(x-{frac {alpha }{x}} ight)^{2}}dx=int _{-infty }^{infty }e^{-x^{2}}dx}{displaystyle int _{-infty }^{infty }e^{-left(x-{frac {alpha }{x}}
ight)^{2}}dx=int _{-infty }^{infty }e^{-x^{2}}dx}, und das ist {displaystyle {sqrt {pi }}}sqrt{pi}.

2. Beweis

{displaystyle I'(alpha )=int _{0}^{infty }exp left(-x^{2}-{frac {alpha ^{2}}{x^{2}}} ight)\,{frac {-2alpha }{x^{2}}}\,dx}{displaystyle I'(alpha )=int _{0}^{infty }exp left(-x^{2}-{frac {alpha ^{2}}{x^{2}}}
ight)\,{frac {-2alpha }{x^{2}}}\,dx} ist nach Substitution {displaystyle xmapsto {frac {alpha }{x}}}{displaystyle xmapsto {frac {alpha }{x}}} gleich {displaystyle -2int _{0}^{infty }exp left(-x^{2}-{frac {alpha ^{2}}{x^{2}}} ight)\,dx}{displaystyle -2int _{0}^{infty }exp left(-x^{2}-{frac {alpha ^{2}}{x^{2}}}
ight)\,dx}.

Die Differenzialgleichung {displaystyle I'(alpha )=-2\,I(alpha )}{displaystyle I'(alpha )=-2\,I(alpha )} wird gelöst durch {displaystyle I(alpha )=C\,e^{-2alpha }}{displaystyle I(alpha )=C\,e^{-2alpha }}, wobei {displaystyle C=I(0)=int _{0}^{infty }e^{-x^{2}}\,dx={frac {sqrt {pi }}{2}}}{displaystyle C=I(0)=int _{0}^{infty }e^{-x^{2}}\,dx={frac {sqrt {pi }}{2}}} ist.

 
1.3Bearbeiten
{displaystyle int _{0}^{infty }left({frac {1}{x\,e^{x}}}-{frac {e^{-x(z-1)}}{e^{x}-1}} ight)dx=psi (z)qquad { ext{Re}}(z)>0}{displaystyle int _{0}^{infty }left({frac {1}{x\,e^{x}}}-{frac {e^{-x(z-1)}}{e^{x}-1}}
ight)dx=psi (z)qquad {	ext{Re}}(z)>0}
Beweis

In der Formel {displaystyle int _{0}^{1}{frac {1-x^{z-1}}{1-x}}\,dx=psi (z)+gamma }{displaystyle int _{0}^{1}{frac {1-x^{z-1}}{1-x}}\,dx=psi (z)+gamma } wird das Integral

nach Substitution {displaystyle xmapsto e^{-x}}{displaystyle xmapsto e^{-x}} zu {displaystyle int _{0}^{infty }left({frac {1}{e^{x}-1}}-{frac {e^{-x(z-1)}}{e^{x}-1}} ight)\,dx}{displaystyle int _{0}^{infty }left({frac {1}{e^{x}-1}}-{frac {e^{-x(z-1)}}{e^{x}-1}}
ight)\,dx},

und {displaystyle gamma \,}{displaystyle gamma \,} lässt sich schreiben als {displaystyle int _{0}^{infty }left({frac {1}{e^{x}-1}}-{frac {1}{x\,e^{x}}} ight)\,dx}{displaystyle int _{0}^{infty }left({frac {1}{e^{x}-1}}-{frac {1}{x\,e^{x}}}
ight)\,dx}.

 
1.4Bearbeiten
{displaystyle int _{0}^{infty }left({frac {z-1}{x\,e^{x}}}-{frac {1-e^{-x(z-1)}}{x\,(e^{x}-1)}} ight)\,dx=log Gamma (z)qquad { ext{Re}}(z)>0}{displaystyle int _{0}^{infty }left({frac {z-1}{x\,e^{x}}}-{frac {1-e^{-x(z-1)}}{x\,(e^{x}-1)}}
ight)\,dx=log Gamma (z)qquad {	ext{Re}}(z)>0}
Beweis (Formel nach Malmstén)

Integriere die Formel {displaystyle int _{0}^{infty }left({frac {1}{x\,e^{x}}}-{frac {e^{-x(z'-1)}}{e^{x}-1}} ight)dx=psi (z')}{displaystyle int _{0}^{infty }left({frac {1}{x\,e^{x}}}-{frac {e^{-x(z'-1)}}{e^{x}-1}}
ight)dx=psi (z')} nach z' von 1 bis z.

 
1.5Bearbeiten
{displaystyle int _{0}^{infty }left({frac {1}{e^{x}}}-{frac {1}{(1+x)^{z}}} ight)\,{frac {dx}{x}}=psi (z)qquad { ext{Re}}(z)>0}{displaystyle int _{0}^{infty }left({frac {1}{e^{x}}}-{frac {1}{(1+x)^{z}}}
ight)\,{frac {dx}{x}}=psi (z)qquad {	ext{Re}}(z)>0}
Beweis (Formel nach Cauchy)

{displaystyle forall varepsilon >0}{displaystyle forall varepsilon >0} ist {displaystyle int _{0}^{infty }left({frac {x^{varepsilon -1}}{e^{x}}}-{frac {x^{varepsilon -1}}{(1+x)^{z}}} ight)dx=Gamma (varepsilon )-{frac {Gamma (z-varepsilon )\,Gamma (varepsilon )}{Gamma (z)}}}{displaystyle int _{0}^{infty }left({frac {x^{varepsilon -1}}{e^{x}}}-{frac {x^{varepsilon -1}}{(1+x)^{z}}}
ight)dx=Gamma (varepsilon )-{frac {Gamma (z-varepsilon )\,Gamma (varepsilon )}{Gamma (z)}}}

{displaystyle ={frac {Gamma (z)\,Gamma (varepsilon )-Gamma (z-varepsilon )\,Gamma (varepsilon )}{Gamma (z)}}={frac {Gamma (1+varepsilon )}{Gamma (z)}}cdot {frac {Gamma (z)-Gamma (z-varepsilon )}{varepsilon }}\,{xrightarrow {\,\,varepsilon o 0\,\,}}\,{frac {1}{Gamma (z)}}cdot Gamma '(z)=psi (z)}{displaystyle ={frac {Gamma (z)\,Gamma (varepsilon )-Gamma (z-varepsilon )\,Gamma (varepsilon )}{Gamma (z)}}={frac {Gamma (1+varepsilon )}{Gamma (z)}}cdot {frac {Gamma (z)-Gamma (z-varepsilon )}{varepsilon }}\,{xrightarrow {\,\,varepsilon 	o 0\,\,}}\,{frac {1}{Gamma (z)}}cdot Gamma '(z)=psi (z)}.

 
1.6Bearbeiten
{displaystyle int _{0}^{infty }{frac {x^{z-1}}{e^{x}-1}}\,dx=Gamma (z)\,zeta (z)qquad { ext{Re}}(z)>1}{displaystyle int _{0}^{infty }{frac {x^{z-1}}{e^{x}-1}}\,dx=Gamma (z)\,zeta (z)qquad {	ext{Re}}(z)>1}
Beweis

Wegen {displaystyle {frac {1}{e^{x}-1}}={frac {e^{-x}}{1-e^{-x}}}=sum _{k=1}^{infty }e^{-kz}}{displaystyle {frac {1}{e^{x}-1}}={frac {e^{-x}}{1-e^{-x}}}=sum _{k=1}^{infty }e^{-kz}} ist {displaystyle {frac {x^{z-1}}{e^{x}-1}}=sum _{k=1}^{infty }x^{z-1}\,e^{-kx}}{displaystyle {frac {x^{z-1}}{e^{x}-1}}=sum _{k=1}^{infty }x^{z-1}\,e^{-kx}}

und somit {displaystyle int _{0}^{infty }{frac {x^{z-1}}{e^{x}-1}}\,dx=sum _{k=1}^{infty }int _{0}^{infty }x^{z-1}\,e^{-kx}\,dx=sum _{k=1}^{infty }{frac {Gamma (z)}{k^{z}}}=Gamma (z)\,zeta (z)}{displaystyle int _{0}^{infty }{frac {x^{z-1}}{e^{x}-1}}\,dx=sum _{k=1}^{infty }int _{0}^{infty }x^{z-1}\,e^{-kx}\,dx=sum _{k=1}^{infty }{frac {Gamma (z)}{k^{z}}}=Gamma (z)\,zeta (z)}.

 
1.7Bearbeiten
{displaystyle int _{0}^{infty }{frac {x^{z-1}}{e^{x}+1}}\,dx=Gamma (z)\,eta (z)qquad { ext{Re}}(z)>0}{displaystyle int _{0}^{infty }{frac {x^{z-1}}{e^{x}+1}}\,dx=Gamma (z)\,eta (z)qquad {	ext{Re}}(z)>0}
Beweis

Wegen {displaystyle {frac {1}{e^{x}+1}}={frac {e^{-x}}{1+e^{-x}}}={frac {-(-e^{-x})}{1-(-e^{-x})}}=-sum _{k=1}^{infty }(-e^{-x})^{k}=sum _{k=1}^{infty }(-1)^{k-1}\,e^{-kx}}{displaystyle {frac {1}{e^{x}+1}}={frac {e^{-x}}{1+e^{-x}}}={frac {-(-e^{-x})}{1-(-e^{-x})}}=-sum _{k=1}^{infty }(-e^{-x})^{k}=sum _{k=1}^{infty }(-1)^{k-1}\,e^{-kx}} ist {displaystyle {frac {x^{z-1}}{e^{x}+1}}=sum _{k=1}^{infty }(-1)^{k-1}\,x^{z-1}\,e^{-kx}}{displaystyle {frac {x^{z-1}}{e^{x}+1}}=sum _{k=1}^{infty }(-1)^{k-1}\,x^{z-1}\,e^{-kx}}

und somit {displaystyle int _{0}^{infty }{frac {x^{z-1}}{e^{x}+1}}\,dx=sum _{k=1}^{infty }(-1)^{k-1}\,int _{0}^{infty }x^{z-1}\,e^{-kx}\,dx=sum _{k=1}^{infty }(-1)^{k-1}\,{frac {Gamma (z)}{k^{z}}}=Gamma (z)\,eta (z)}{displaystyle int _{0}^{infty }{frac {x^{z-1}}{e^{x}+1}}\,dx=sum _{k=1}^{infty }(-1)^{k-1}\,int _{0}^{infty }x^{z-1}\,e^{-kx}\,dx=sum _{k=1}^{infty }(-1)^{k-1}\,{frac {Gamma (z)}{k^{z}}}=Gamma (z)\,eta (z)}.

 
1.8Bearbeiten
{displaystyle {frac {1}{Gamma (z)}}={frac {1}{2pi i}}int _{C}t^{-z}e^{t}\,dtqquad C\,}{displaystyle {frac {1}{Gamma (z)}}={frac {1}{2pi i}}int _{C}t^{-z}e^{t}\,dtqquad C\,} ist eine Kurve in {displaystyle mathbb {C} setminus mathbb {R} ^{geq 0}}{displaystyle mathbb {C} setminus mathbb {R} ^{geq 0}}, die von {displaystyle -infty -ivarepsilon \,}{displaystyle -infty -ivarepsilon \,} nach {displaystyle -infty +ivarepsilon \,}{displaystyle -infty +ivarepsilon \,} läuft.
Für {displaystyle { ext{Re}}(z)>0\,}{displaystyle {	ext{Re}}(z)>0\,} kann man als Integrationsweg {displaystyle C\,}{displaystyle C\,} auch die Gerade {displaystyle a+imathbb {R} }{displaystyle a+imathbb {R} }, mit {displaystyle a>0\,}{displaystyle a>0\,}, hernehmen.
Beweis für Re(z)>0 (Hankelsche Integraldarstellung für die reziproke Gammafunktion)

Die Funktion {displaystyle f(t)=t^{-z}\,e^{t}}{displaystyle f(t)=t^{-z}\,e^{t}} mit {displaystyle { ext{Re}}(z)>0\,}{displaystyle {	ext{Re}}(z)>0\,} ist auf {displaystyle mathbb {C} setminus mathbb {R} ^{geq 0}}{displaystyle mathbb {C} setminus mathbb {R} ^{geq 0}} holomorph.

Integrationsweg9.PNG



Für {displaystyle varepsilon leq tleq R\,}{displaystyle varepsilon leq tleq R\,} ist {displaystyle |f(-R+it)|\,}{displaystyle |f(-R+it)|\,}

{displaystyle =left|(-R+it)^{-z} ight|cdot left|e^{-R+it} ight|=Theta left(R^{-{ ext{Re}}(z)} ight)cdot e^{-R}}{displaystyle =left|(-R+it)^{-z}
ight|cdot left|e^{-R+it}
ight|=Theta left(R^{-{	ext{Re}}(z)}
ight)cdot e^{-R}}.

Daher verschwinden die Integrale über den Abschnitten {displaystyle sigma _{1},sigma _{2}\,}{displaystyle sigma _{1},sigma _{2}\,} für {displaystyle R o infty \,}R	o infty \,.


Und es ist

{displaystyle left|int _{-R}^{a}f(tpm iR)\,dt ight|leq int _{-R}^{a}left|(tpm iR)^{-z} ight|cdot left|e^{tpm iR} ight|\,dt}{displaystyle left|int _{-R}^{a}f(tpm iR)\,dt
ight|leq int _{-R}^{a}left|(tpm iR)^{-z}
ight|cdot left|e^{tpm iR}
ight|\,dt}

{displaystyle leq max _{-Rleq tleq a}left|(tpm iR)^{-z} ight|cdot int _{-R}^{a}e^{t}\,dt=Theta left(R^{-{ ext{Re}}(z)} ight)cdot e^{a}}{displaystyle leq max _{-Rleq tleq a}left|(tpm iR)^{-z}
ight|cdot int _{-R}^{a}e^{t}\,dt=Theta left(R^{-{	ext{Re}}(z)}
ight)cdot e^{a}}.

Daher verschwinden auch die Integrale über den Abschnitten {displaystyle au _{1}, au _{2}\,}{displaystyle 	au _{1},	au _{2}\,} für {displaystyle R o infty \,}R	o infty \,.


Also ist

{displaystyle {frac {1}{2pi i}}int _{C}t^{-z}e^{t}\,dt={frac {1}{2pi i}}int _{a-iinfty }^{a+iinfty }s^{-z}\,e^{s}\,ds}{displaystyle {frac {1}{2pi i}}int _{C}t^{-z}e^{t}\,dt={frac {1}{2pi i}}int _{a-iinfty }^{a+iinfty }s^{-z}\,e^{s}\,ds}

{displaystyle ={mathcal {L}}^{-1}left[s^{-z} ight](1)=left.{frac {t^{z-1}}{Gamma (z)}} ight|_{t=1}={frac {1}{Gamma (z)}}}{displaystyle ={mathcal {L}}^{-1}left[s^{-z}
ight](1)=left.{frac {t^{z-1}}{Gamma (z)}}
ight|_{t=1}={frac {1}{Gamma (z)}}}.

Beweis für Re(z)<1

Die Funktion {displaystyle f(t)=t^{z-1}e^{t}\,}{displaystyle f(t)=t^{z-1}e^{t}\,} mit {displaystyle { ext{Re}}(z)>0\,}{displaystyle {	ext{Re}}(z)>0\,} ist auf {displaystyle mathbb {C} setminus mathbb {R} ^{geq 0}}{displaystyle mathbb {C} setminus mathbb {R} ^{geq 0}} holomorph.

Hankelintegrationsweg.PNG

Das Integral über dem Kreisbogen {displaystyle K_{varepsilon }\,}{displaystyle K_{varepsilon }\,} verschwindet für {displaystyle varepsilon o 0+\,}{displaystyle varepsilon 	o 0+\,}, weil wegen {displaystyle left|t^{z-1} ight|=Theta left(|t|^{{ ext{Re}}(z)-1} ight)=oleft({frac {1}{|t|}} ight)}{displaystyle left|t^{z-1}
ight|=Theta left(|t|^{{	ext{Re}}(z)-1}
ight)=oleft({frac {1}{|t|}}
ight)} für {displaystyle |t| o 0\,}{displaystyle |t|	o 0\,}

ist {displaystyle max _{tin K_{varepsilon }}left|t^{z-1}e^{-t} ight|=oleft({frac {1}{varepsilon }} ight)}{displaystyle max _{tin K_{varepsilon }}left|t^{z-1}e^{-t}
ight|=oleft({frac {1}{varepsilon }}
ight)}, und daher gilt {displaystyle left|int _{K_{varepsilon }}f(t)\,dt ight|leq pi varepsilon cdot oleft({frac {1}{varepsilon }} ight)=o(1)}{displaystyle left|int _{K_{varepsilon }}f(t)\,dt
ight|leq pi varepsilon cdot oleft({frac {1}{varepsilon }}
ight)=o(1)}.

Für die horizontalen Integrationswege gilt:

{displaystyle int _{-infty }^{0}f(tpm ivarepsilon )\,dt=int _{-infty }^{0}(tpm ivarepsilon )^{z-1}\,e^{tpm ivarepsilon }\,dt=e^{pm ipi (z-1)}int _{-infty }^{0}(-tmp ivarepsilon )^{z-1}\,e^{tpm ivarepsilon }\,dt}{displaystyle int _{-infty }^{0}f(tpm ivarepsilon )\,dt=int _{-infty }^{0}(tpm ivarepsilon )^{z-1}\,e^{tpm ivarepsilon }\,dt=e^{pm ipi (z-1)}int _{-infty }^{0}(-tmp ivarepsilon )^{z-1}\,e^{tpm ivarepsilon }\,dt}

{displaystyle =-e^{pm ipi z}int _{0}^{infty }(tmp ivarepsilon )^{z-1}\,e^{-tpm ivarepsilon }\,dt o -e^{pm ipi z}\,Gamma (z)}{displaystyle =-e^{pm ipi z}int _{0}^{infty }(tmp ivarepsilon )^{z-1}\,e^{-tpm ivarepsilon }\,dt	o -e^{pm ipi z}\,Gamma (z)} für {displaystyle varepsilon o 0+\,}{displaystyle varepsilon 	o 0+\,}.

Daher ist {displaystyle int _{C}t^{z-1}\,e^{t}\,dt=left(e^{ipi z}-e^{-ipi z} ight)Gamma (z)=2isin pi z\,Gamma (z)={frac {2pi i}{Gamma (z)\,Gamma (1-z)}}\,Gamma (z)={frac {2pi i}{Gamma (1-z)}}}{displaystyle int _{C}t^{z-1}\,e^{t}\,dt=left(e^{ipi z}-e^{-ipi z}
ight)Gamma (z)=2isin pi z\,Gamma (z)={frac {2pi i}{Gamma (z)\,Gamma (1-z)}}\,Gamma (z)={frac {2pi i}{Gamma (1-z)}}}.

Ersetzt man {displaystyle z\,}z\, durch {displaystyle 1-z\,}{displaystyle 1-z\,}, so ist {displaystyle {frac {1}{Gamma (z)}}={frac {1}{2pi i}}int _{C}t^{-z}e^{t}\,dt}{displaystyle {frac {1}{Gamma (z)}}={frac {1}{2pi i}}int _{C}t^{-z}e^{t}\,dt} für {displaystyle { ext{Re}}(z)<1\,}{displaystyle {	ext{Re}}(z)<1\,}.

 
1.9Bearbeiten
{displaystyle J_{ u }(x)={frac {1}{2pi i}}int _{C}e^{{frac {x}{2}}left(t-{frac {1}{t}} ight)}\,{frac {dt}{t^{ u +1}}}qquad { ext{Re}}(x)>0qquad C\,}{displaystyle J_{
u }(x)={frac {1}{2pi i}}int _{C}e^{{frac {x}{2}}left(t-{frac {1}{t}}
ight)}\,{frac {dt}{t^{
u +1}}}qquad {	ext{Re}}(x)>0qquad C\,} ist eine Kurve in {displaystyle mathbb {C} setminus mathbb {R} ^{geq 0}}{displaystyle mathbb {C} setminus mathbb {R} ^{geq 0}}, die von {displaystyle -infty -ivarepsilon \,}{displaystyle -infty -ivarepsilon \,} nach {displaystyle -infty +ivarepsilon \,}{displaystyle -infty +ivarepsilon \,} läuft.
Beweis für x>0 (Hankelsche Integraldarstellung für die Besselfunktion)

{displaystyle J_{ u }(x)=sum _{n=0}^{infty }{frac {(-1)^{n}}{n!\,Gamma (n+ u +1)}}left({frac {x}{2}} ight)^{ u +2n}}{displaystyle J_{
u }(x)=sum _{n=0}^{infty }{frac {(-1)^{n}}{n!\,Gamma (n+
u +1)}}left({frac {x}{2}}
ight)^{
u +2n}}

Ersetze {displaystyle {frac {1}{Gamma (n+ u +1)}}}{displaystyle {frac {1}{Gamma (n+
u +1)}}} durch die Hankelsche Integraldarstellung {displaystyle {frac {1}{2pi i}}int _{C}t^{-n- u -1}e^{t}\,dt}{displaystyle {frac {1}{2pi i}}int _{C}t^{-n-
u -1}e^{t}\,dt}.

{displaystyle J_{ u }(x)={frac {1}{2pi i}}int _{C}sum _{n=0}^{infty }{frac {(-1)^{n}}{n!}}\,{frac {left({frac {x}{2}} ight)^{2n}}{t^{n}}}\,left({frac {x}{2}} ight)^{ u }\,{frac {e^{t}}{t^{ u +1}}}\,dt={frac {1}{2pi i}}int _{C}e^{t-{frac {x^{2}}{4t}}}\,left({frac {x}{2}} ight)^{ u }{frac {dt}{t^{ u +1}}}}{displaystyle J_{
u }(x)={frac {1}{2pi i}}int _{C}sum _{n=0}^{infty }{frac {(-1)^{n}}{n!}}\,{frac {left({frac {x}{2}}
ight)^{2n}}{t^{n}}}\,left({frac {x}{2}}
ight)^{
u }\,{frac {e^{t}}{t^{
u +1}}}\,dt={frac {1}{2pi i}}int _{C}e^{t-{frac {x^{2}}{4t}}}\,left({frac {x}{2}}
ight)^{
u }{frac {dt}{t^{
u +1}}}}

Nach Substitution {displaystyle tmapsto {frac {x}{2}}cdot t}{displaystyle tmapsto {frac {x}{2}}cdot t} ändert sich am Integrationsweg {displaystyle C\,}{displaystyle C\,} nichts, und es ist {displaystyle J_{ u }(x)={frac {1}{2pi i}}int _{C}e^{{frac {x}{2}}left(t-{frac {1}{t}} ight)}\,{frac {dt}{t^{ u +1}}}}{displaystyle J_{
u }(x)={frac {1}{2pi i}}int _{C}e^{{frac {x}{2}}left(t-{frac {1}{t}}
ight)}\,{frac {dt}{t^{
u +1}}}}.

 
1.10Bearbeiten
{displaystyle int _{0}^{infty }left({frac {1}{x}}-{frac {1}{e^{x}-1}} ight)e^{-zx}\,dx=psi (z+1)-log zqquad { ext{Re}}(z)>0}{displaystyle int _{0}^{infty }left({frac {1}{x}}-{frac {1}{e^{x}-1}}
ight)e^{-zx}\,dx=psi (z+1)-log zqquad {	ext{Re}}(z)>0}
Beweis

Dies folgt unmittelbar aus den Formeln {displaystyle psi (z+1)=int _{0}^{infty }left({frac {e^{-x}}{x}}-{frac {e^{-zx}}{e^{x}-1}} ight)dx}{displaystyle psi (z+1)=int _{0}^{infty }left({frac {e^{-x}}{x}}-{frac {e^{-zx}}{e^{x}-1}}
ight)dx} und {displaystyle log z=int _{0}^{infty }left({frac {e^{-x}}{x}}-{frac {e^{-zx}}{x}} ight)dx}{displaystyle log z=int _{0}^{infty }left({frac {e^{-x}}{x}}-{frac {e^{-zx}}{x}}
ight)dx}.

 
1.11Bearbeiten
{displaystyle int _{0}^{infty }left({frac {1}{2}}-{frac {1}{x}}+{frac {1}{e^{x}-1}} ight)\,{frac {e^{-zx}}{x}}\,dx=log left({frac {z!\,e^{z}}{z^{z}\,{sqrt {2pi z}}}} ight)qquad { ext{Re}}(z)>0}{displaystyle int _{0}^{infty }left({frac {1}{2}}-{frac {1}{x}}+{frac {1}{e^{x}-1}}
ight)\,{frac {e^{-zx}}{x}}\,dx=log left({frac {z!\,e^{z}}{z^{z}\,{sqrt {2pi z}}}}
ight)qquad {	ext{Re}}(z)>0}
Beweis (Erste Binetsche Formel)

In der Formel {displaystyle psi (z)+{frac {1}{z}}=log z+int _{0}^{infty }e^{-zx}left({frac {1}{x}}-{frac {1}{e^{x}-1}} ight)dx}{displaystyle psi (z)+{frac {1}{z}}=log z+int _{0}^{infty }e^{-zx}left({frac {1}{x}}-{frac {1}{e^{x}-1}}
ight)dx} ersetze {displaystyle {frac {1}{z}}}{displaystyle {frac {1}{z}}} durch {displaystyle int _{0}^{infty }e^{-zx}\,dx}{displaystyle int _{0}^{infty }e^{-zx}\,dx}:

{displaystyle psi (z)=log z-{frac {1}{2z}}+int _{0}^{infty }e^{-zx}left(-{frac {1}{2}}+{frac {1}{x}}-{frac {1}{e^{x}-1}} ight)dx}{displaystyle psi (z)=log z-{frac {1}{2z}}+int _{0}^{infty }e^{-zx}left(-{frac {1}{2}}+{frac {1}{x}}-{frac {1}{e^{x}-1}}
ight)dx}, wobei {displaystyle lim _{x o 0}{frac {{frac {1}{2}}-{frac {1}{x}}+{frac {1}{e^{x}-1}}}{x}}={frac {1}{12}}}{displaystyle lim _{x	o 0}{frac {{frac {1}{2}}-{frac {1}{x}}+{frac {1}{e^{x}-1}}}{x}}={frac {1}{12}}} ist.

Integriert man beide Seiten unbestimmt nach {displaystyle z\,}z\,, so ist

{displaystyle log Gamma (z)=left(z-{frac {1}{2}} ight)log z-z+int _{0}^{infty }e^{-zx}left({frac {1}{2}}-{frac {1}{x}}+{frac {1}{e^{x}-1}} ight){frac {dx}{x}}+C}{displaystyle log Gamma (z)=left(z-{frac {1}{2}}
ight)log z-z+int _{0}^{infty }e^{-zx}left({frac {1}{2}}-{frac {1}{x}}+{frac {1}{e^{x}-1}}
ight){frac {dx}{x}}+C}.

Daraus folgt {displaystyle int _{0}^{infty }e^{-zx}left({frac {1}{2}}-{frac {1}{x}}+{frac {1}{e^{x}-1}} ight){frac {dx}{x}}+C=log left({frac {(z-1)!\,e^{z}}{z^{z-{frac {1}{2}}}}} ight)}{displaystyle int _{0}^{infty }e^{-zx}left({frac {1}{2}}-{frac {1}{x}}+{frac {1}{e^{x}-1}}
ight){frac {dx}{x}}+C=log left({frac {(z-1)!\,e^{z}}{z^{z-{frac {1}{2}}}}}
ight)}.

Nachdem für {displaystyle z o infty \,}{displaystyle z	o infty \,} das Integral verschwindet, ist {displaystyle C=lim _{z o infty }log left({frac {z!\,e^{z}}{z^{z}\,{sqrt {z}}}} ight)=log {sqrt {2pi }}}{displaystyle C=lim _{z	o infty }log left({frac {z!\,e^{z}}{z^{z}\,{sqrt {z}}}}
ight)=log {sqrt {2pi }}}.

 
1.12Bearbeiten
{displaystyle J_{ u }(z)={frac {1}{Gamma left({frac {1}{2}} ight)Gamma left( u +{frac {1}{2}} ight)}}left({frac {z}{2}} ight)^{ u }int _{-1}^{1}e^{izx}\,(1-x^{2})^{ u -{frac {1}{2}}}\,dxqquad { ext{Re}}( u )>-{frac {1}{2}}}{displaystyle J_{
u }(z)={frac {1}{Gamma left({frac {1}{2}}
ight)Gamma left(
u +{frac {1}{2}}
ight)}}left({frac {z}{2}}
ight)^{
u }int _{-1}^{1}e^{izx}\,(1-x^{2})^{
u -{frac {1}{2}}}\,dxqquad {	ext{Re}}(
u )>-{frac {1}{2}}}
Beweis (Poissonsche Darstellung der Besselfunktion)

Setze {displaystyle I:=int _{-1}^{1}e^{izx}\,(1-x^{2})^{ u -{frac {1}{2}}}\,dx}{displaystyle I:=int _{-1}^{1}e^{izx}\,(1-x^{2})^{
u -{frac {1}{2}}}\,dx}.

Verwende die Reihenentwicklung {displaystyle e^{izx}=sum _{n=0}^{infty }{frac {(iz)^{n}}{n!}}\,x^{n}}{displaystyle e^{izx}=sum _{n=0}^{infty }{frac {(iz)^{n}}{n!}}\,x^{n}}:

{displaystyle I=sum _{n=0}^{infty }{frac {(iz)^{n}}{n!}}int _{-1}^{1}x^{n}(1-x^{2})^{ u -{frac {1}{2}}}\,dx}{displaystyle I=sum _{n=0}^{infty }{frac {(iz)^{n}}{n!}}int _{-1}^{1}x^{n}(1-x^{2})^{
u -{frac {1}{2}}}\,dx}

Letzter Integrand ist für gerade {displaystyle n\,}n\, gerade und für ungerade {displaystyle n\,}n\, ungerade.

{displaystyle I=sum _{n=0}^{infty }{frac {(iz)^{2n}}{(2n)!}}cdot 2int _{0}^{1}x^{2n}\,(1-x^{2})^{ u -{frac {1}{2}}}\,dx}{displaystyle I=sum _{n=0}^{infty }{frac {(iz)^{2n}}{(2n)!}}cdot 2int _{0}^{1}x^{2n}\,(1-x^{2})^{
u -{frac {1}{2}}}\,dx}

Nach Substitution {displaystyle x={sqrt {t}}}{displaystyle x={sqrt {t}}} ist {displaystyle I=sum _{n=0}^{infty }{frac {(-1)^{n}\,z^{2n}}{(2n)!}}\,int _{0}^{1}t^{n-{frac {1}{2}}}\,(1-t)^{ u -{frac {1}{2}}}\,dt}{displaystyle I=sum _{n=0}^{infty }{frac {(-1)^{n}\,z^{2n}}{(2n)!}}\,int _{0}^{1}t^{n-{frac {1}{2}}}\,(1-t)^{
u -{frac {1}{2}}}\,dt}.

Dabei ist {displaystyle int _{0}^{1}t^{n-{frac {1}{2}}}\,(1-t)^{ u -{frac {1}{2}}}\,dt=Bleft(n+{frac {1}{2}}, u +{frac {1}{2}} ight)}{displaystyle int _{0}^{1}t^{n-{frac {1}{2}}}\,(1-t)^{
u -{frac {1}{2}}}\,dt=Bleft(n+{frac {1}{2}},
u +{frac {1}{2}}
ight)}   {displaystyle ={frac {Gamma left(n+{frac {1}{2}} ight)Gamma left( u +{frac {1}{2}} ight)}{Gamma ( u +n+1)}}}{displaystyle ={frac {Gamma left(n+{frac {1}{2}}
ight)Gamma left(
u +{frac {1}{2}}
ight)}{Gamma (
u +n+1)}}},

wobei nach Legendrescher Verdopplungsformel {displaystyle Gamma left(n+{frac {1}{2}} ight)={frac {Gamma left({frac {1}{2}} ight)}{2^{2n}}}\,{frac {(2n)!}{n!}}}{displaystyle Gamma left(n+{frac {1}{2}}
ight)={frac {Gamma left({frac {1}{2}}
ight)}{2^{2n}}}\,{frac {(2n)!}{n!}}} ist.

Also ist {displaystyle I=sum _{n=0}^{infty }(-1)^{n}\,left({frac {z}{2}} ight)^{2n}\,{frac {Gamma left({frac {1}{2}} ight)\,Gamma left( u +{frac {1}{2}} ight)}{n!\,Gamma ( u +n+1)}}}{displaystyle I=sum _{n=0}^{infty }(-1)^{n}\,left({frac {z}{2}}
ight)^{2n}\,{frac {Gamma left({frac {1}{2}}
ight)\,Gamma left(
u +{frac {1}{2}}
ight)}{n!\,Gamma (
u +n+1)}}},

und damit ist {displaystyle {frac {1}{Gamma left({frac {1}{2}} ight)Gamma left( u +{frac {1}{2}} ight)}}left({frac {z}{2}} ight)^{ u }I=sum _{n=0}^{infty }{frac {(-1)^{n}}{n!\,Gamma ( u +n+1)}}left({frac {z}{2}} ight)^{ u +2n}=J_{ u }(z)}{displaystyle {frac {1}{Gamma left({frac {1}{2}}
ight)Gamma left(
u +{frac {1}{2}}
ight)}}left({frac {z}{2}}
ight)^{
u }I=sum _{n=0}^{infty }{frac {(-1)^{n}}{n!\,Gamma (
u +n+1)}}left({frac {z}{2}}
ight)^{
u +2n}=J_{
u }(z)}.

 
2.1Bearbeiten
{displaystyle int _{0}^{infty }e^{-sx}\,{frac {a}{a^{2}+x^{2}}}\,dx=sin(as)\,{ ext{Ci}}(as)-cos(as)\,left({ ext{Si}}(as)-{frac {pi }{2}} ight)}{displaystyle int _{0}^{infty }e^{-sx}\,{frac {a}{a^{2}+x^{2}}}\,dx=sin(as)\,{	ext{Ci}}(as)-cos(as)\,left({	ext{Si}}(as)-{frac {pi }{2}}
ight)}
Beweis

{displaystyle int _{0}^{infty }e^{-sx}\,{frac {a}{a^{2}+x^{2}}}\,dx=int _{0}^{infty }e^{-sx}int _{0}^{infty }sin(at)\,e^{-xt}\,dt\,dx=int _{0}^{infty }int _{0}^{infty }sin(at)\,e^{-(s+t)x}\,dx\,dt}{displaystyle int _{0}^{infty }e^{-sx}\,{frac {a}{a^{2}+x^{2}}}\,dx=int _{0}^{infty }e^{-sx}int _{0}^{infty }sin(at)\,e^{-xt}\,dt\,dx=int _{0}^{infty }int _{0}^{infty }sin(at)\,e^{-(s+t)x}\,dx\,dt}

{displaystyle =int _{0}^{infty }{frac {sin(at)}{s+t}}\,dt=int _{s}^{infty }{frac {sin left(a(t-s) ight)}{t}}\,dt=int _{s}^{infty }{frac {sin(at)\,cos(as)-cos(at)\,sin(as)}{t}}\,dt}{displaystyle =int _{0}^{infty }{frac {sin(at)}{s+t}}\,dt=int _{s}^{infty }{frac {sin left(a(t-s)
ight)}{t}}\,dt=int _{s}^{infty }{frac {sin(at)\,cos(as)-cos(at)\,sin(as)}{t}}\,dt}

{displaystyle =cos(as)int _{s}^{infty }{frac {sin(at)}{t}}\,dt-sin(as)int _{s}^{infty }{frac {cos(at)}{t}}\,dt=cos(as)\,left({frac {pi }{2}}-{ ext{Si}}(as) ight)+sin(as)\,{ ext{Ci}}(as)}{displaystyle =cos(as)int _{s}^{infty }{frac {sin(at)}{t}}\,dt-sin(as)int _{s}^{infty }{frac {cos(at)}{t}}\,dt=cos(as)\,left({frac {pi }{2}}-{	ext{Si}}(as)
ight)+sin(as)\,{	ext{Ci}}(as)}

 
2.2Bearbeiten
{displaystyle int _{0}^{infty }e^{-sx}\,{frac {x}{a^{2}+x^{2}}}\,dx=sin(as)\,left({frac {pi }{2}}-{ ext{Si}}(as) ight)-cos(as)\,{ ext{Ci}}(as)}{displaystyle int _{0}^{infty }e^{-sx}\,{frac {x}{a^{2}+x^{2}}}\,dx=sin(as)\,left({frac {pi }{2}}-{	ext{Si}}(as)
ight)-cos(as)\,{	ext{Ci}}(as)}
Beweis

{displaystyle int _{0}^{infty }e^{-sx}\,{frac {x}{a^{2}+x^{2}}}\,dx=int _{0}^{infty }e^{-sx}int _{0}^{infty }cos(at)\,e^{-xt}\,dt\,dx=int _{0}^{infty }int _{0}^{infty }cos(at)\,e^{-(s+t)x}\,dx\,dt}{displaystyle int _{0}^{infty }e^{-sx}\,{frac {x}{a^{2}+x^{2}}}\,dx=int _{0}^{infty }e^{-sx}int _{0}^{infty }cos(at)\,e^{-xt}\,dt\,dx=int _{0}^{infty }int _{0}^{infty }cos(at)\,e^{-(s+t)x}\,dx\,dt}

{displaystyle =int _{0}^{infty }{frac {cos(at)}{s+t}}\,dt=int _{s}^{infty }{frac {cos left(a(t-s) ight)}{t}}\,dt=int _{s}^{infty }{frac {cos(at)\,cos(as)+sin(at)\,sin(as)}{t}}\,dt}{displaystyle =int _{0}^{infty }{frac {cos(at)}{s+t}}\,dt=int _{s}^{infty }{frac {cos left(a(t-s)
ight)}{t}}\,dt=int _{s}^{infty }{frac {cos(at)\,cos(as)+sin(at)\,sin(as)}{t}}\,dt}

{displaystyle =cos(as)int _{s}^{infty }{frac {cos(at)}{t}}\,dt+sin(as)int _{s}^{infty }{frac {sin(at)}{t}}\,dt=-cos(as)\,{ ext{Ci}}(as)+sin(as)\,left({frac {pi }{2}}-{ ext{Si}}(as) ight)}{displaystyle =cos(as)int _{s}^{infty }{frac {cos(at)}{t}}\,dt+sin(as)int _{s}^{infty }{frac {sin(at)}{t}}\,dt=-cos(as)\,{	ext{Ci}}(as)+sin(as)\,left({frac {pi }{2}}-{	ext{Si}}(as)
ight)}

 
2.3Bearbeiten
{displaystyle int _{0}^{infty }x^{z-1}e^{-mu x}\,dx={frac {Gamma (z)}{mu ^{z}}}qquad { ext{Re}}(z),{ ext{Re}}(mu )>0}{displaystyle int _{0}^{infty }x^{z-1}e^{-mu x}\,dx={frac {Gamma (z)}{mu ^{z}}}qquad {	ext{Re}}(z),{	ext{Re}}(mu )>0}
ohne Beweis
 
2.4Bearbeiten
{displaystyle int _{0}^{infty }x^{z-1}\,e^{-imu x}\,dx={frac {Gamma (z)}{(imu )^{z}}}qquad 0<operatorname {Re} (z)<1\,,\,mu >0}{displaystyle int _{0}^{infty }x^{z-1}\,e^{-imu x}\,dx={frac {Gamma (z)}{(imu )^{z}}}qquad 0<operatorname {Re} (z)<1\,,\,mu >0}
ohne Beweis
 
2.5Bearbeiten
{displaystyle int _{-infty }^{infty }{frac {a^{2}}{(e^{x}-ax-b)^{2}+(api )^{2}}}\,dx={frac {1}{1+Wleft({frac {1}{a}}\,e^{-b/a} ight)}}qquad a>0\,,\,bin mathbb {R} }{displaystyle int _{-infty }^{infty }{frac {a^{2}}{(e^{x}-ax-b)^{2}+(api )^{2}}}\,dx={frac {1}{1+Wleft({frac {1}{a}}\,e^{-b/a}
ight)}}qquad a>0\,,\,bin mathbb {R} }
Beweis

Betrachte die Funktion {displaystyle f(z)={frac {1}{alog(-z)+b-z}}cdot {frac {1}{z}}}{displaystyle f(z)={frac {1}{alog(-z)+b-z}}cdot {frac {1}{z}}} auf dem Gebiet {displaystyle D:=mathbb {C} setminus mathbb {R} ^{geq 0}}{displaystyle D:=mathbb {C} setminus mathbb {R} ^{geq 0}}.
Eins durch Log.PNG
{displaystyle forall zin D}{displaystyle forall zin D} gibt es genau ein {displaystyle r>0\,}{displaystyle r>0\,} und genau ein {displaystyle -{frac {pi }{2}}<varphi <{frac {pi }{2}}}{displaystyle -{frac {pi }{2}}<varphi <{frac {pi }{2}}}, so dass {displaystyle -z=re^{ivarphi }\,}{displaystyle -z=re^{ivarphi }\,} ist.

Beim Nenner {displaystyle alog(-z)+b-z=alog left(re^{ivarphi } ight)+b+re^{ivarphi }}{displaystyle alog(-z)+b-z=alog left(re^{ivarphi }
ight)+b+re^{ivarphi }}

{displaystyle =alog r+iavarphi +b+rcos varphi +irsin varphi =(alog r+rcos varphi +b)+i(avarphi +rsin varphi )\,}{displaystyle =alog r+iavarphi +b+rcos varphi +irsin varphi =(alog r+rcos varphi +b)+i(avarphi +rsin varphi )\,}

hat der Imaginärteil das selbe Vorzeichen wie {displaystyle varphi \,}varphi \, und der Realteil steigt streng monoton in {displaystyle r\,}r\,.

Daher ist {displaystyle z=-acdot Wleft({frac {1}{a}}\,e^{-b/a} ight)}{displaystyle z=-acdot Wleft({frac {1}{a}}\,e^{-b/a}
ight)} die einzige Polstelle von {displaystyle f\,}f\,.

Diese erhält man, wenn man {displaystyle varphi =0\,}{displaystyle varphi =0\,} und {displaystyle r=acdot Wleft({frac {1}{a}}\,e^{-b/a} ight)}{displaystyle r=acdot Wleft({frac {1}{a}}\,e^{-b/a}
ight)} setzt.

Nun ist {displaystyle { ext{res}}left(f,-acdot Wleft({frac {1}{a}}\,e^{-b/a} ight) ight)={frac {1}{a}}cdot {frac {1}{1+Wleft({frac {1}{a}}\,e^{-b/a} ight)}}}{displaystyle {	ext{res}}left(f,-acdot Wleft({frac {1}{a}}\,e^{-b/a}
ight)
ight)={frac {1}{a}}cdot {frac {1}{1+Wleft({frac {1}{a}}\,e^{-b/a}
ight)}}}.

Also gilt nach dem Residuensatz {displaystyle int _{gamma _{R,varepsilon }}f\,dz+int _{C_{R}}f\,dz+int _{delta _{R,varepsilon }}f\,dz+int _{c_{varepsilon }}f\,dz={frac {1}{a}}cdot {frac {2pi i}{1+Wleft({frac {1}{a}}\,e^{-b/a} ight)}}}{displaystyle int _{gamma _{R,varepsilon }}f\,dz+int _{C_{R}}f\,dz+int _{delta _{R,varepsilon }}f\,dz+int _{c_{varepsilon }}f\,dz={frac {1}{a}}cdot {frac {2pi i}{1+Wleft({frac {1}{a}}\,e^{-b/a}
ight)}}}.

Aus {displaystyle L(C_{R})sim 2pi R\,}{displaystyle L(C_{R})sim 2pi R\,} und {displaystyle M(C_{R})=max _{zin C_{R}}|f(z)|sim {frac {1}{R^{2}}}}{displaystyle M(C_{R})=max _{zin C_{R}}|f(z)|sim {frac {1}{R^{2}}}} folgt {displaystyle left|int _{C_{R}}f\,dz ight|leq L(C_{R})\,M(C_{R})sim {frac {2pi }{R}}}{displaystyle left|int _{C_{R}}f\,dz
ight|leq L(C_{R})\,M(C_{R})sim {frac {2pi }{R}}}.

Daher geht {displaystyle int _{C_{R}}f\,dz}{displaystyle int _{C_{R}}f\,dz} gegen null für {displaystyle R o infty \,}R	o infty \,.

Und aus {displaystyle L(c_{varepsilon })=pi varepsilon \,}{displaystyle L(c_{varepsilon })=pi varepsilon \,} und {displaystyle M(c_{varepsilon })=max _{zin c_{varepsilon }}|f(z)|sim {frac {-1}{a\,log varepsilon }}cdot {frac {1}{varepsilon }}}{displaystyle M(c_{varepsilon })=max _{zin c_{varepsilon }}|f(z)|sim {frac {-1}{a\,log varepsilon }}cdot {frac {1}{varepsilon }}} folgt {displaystyle left|int _{c_{varepsilon }}f\,dz ight|leq L(c_{varepsilon })\,M(c_{varepsilon })sim {frac {-pi }{a\,log varepsilon }}}{displaystyle left|int _{c_{varepsilon }}f\,dz
ight|leq L(c_{varepsilon })\,M(c_{varepsilon })sim {frac {-pi }{a\,log varepsilon }}}.

Daher geht {displaystyle int _{c_{varepsilon }}f\,dz}{displaystyle int _{c_{varepsilon }}f\,dz} auch gegen null für {displaystyle varepsilon o 0+\,}{displaystyle varepsilon 	o 0+\,}.

Im Grenzübergang {displaystyle R o infty \,,\,varepsilon o 0+}{displaystyle R	o infty \,,\,varepsilon 	o 0+} ergibt sich

{displaystyle int _{0}^{infty }left({frac {1}{alog(-x-i0^{+})+b-x}}-{frac {1}{alog(-x+i0^{+})+b-x}} ight){frac {dx}{x}}={frac {1}{a}}cdot {frac {2pi i}{1+Wleft({frac {1}{a}}\,e^{-b/a} ight)}}}{displaystyle int _{0}^{infty }left({frac {1}{alog(-x-i0^{+})+b-x}}-{frac {1}{alog(-x+i0^{+})+b-x}}
ight){frac {dx}{x}}={frac {1}{a}}cdot {frac {2pi i}{1+Wleft({frac {1}{a}}\,e^{-b/a}
ight)}}}.

Dabei ist {displaystyle {frac {1}{a(log x-ipi )+b-x}}-{frac {1}{a(log x+ipi )+b-x}}={frac {2pi icdot a}{(alog x+b-x)^{2}-(ipi a)^{2}}}}{displaystyle {frac {1}{a(log x-ipi )+b-x}}-{frac {1}{a(log x+ipi )+b-x}}={frac {2pi icdot a}{(alog x+b-x)^{2}-(ipi a)^{2}}}},

und somit gilt {displaystyle int _{0}^{infty }{frac {a^{2}}{(alog x+b-x)^{2}+(api )^{2}}}cdot {frac {dx}{x}}={frac {1}{1+Wleft({frac {1}{a}}\,e^{-b/a} ight)}}}{displaystyle int _{0}^{infty }{frac {a^{2}}{(alog x+b-x)^{2}+(api )^{2}}}cdot {frac {dx}{x}}={frac {1}{1+Wleft({frac {1}{a}}\,e^{-b/a}
ight)}}}.

Substituiert man {displaystyle xmapsto e^{x}}{displaystyle xmapsto e^{x}}, so ist {displaystyle int _{-infty }^{infty }{frac {a^{2}}{(ax+b-e^{x})^{2}+(api )^{2}}}\,dx={frac {1}{1+Wleft({frac {1}{a}}\,e^{-b/a} ight)}}}{displaystyle int _{-infty }^{infty }{frac {a^{2}}{(ax+b-e^{x})^{2}+(api )^{2}}}\,dx={frac {1}{1+Wleft({frac {1}{a}}\,e^{-b/a}
ight)}}}.

 
4.1Bearbeiten
{displaystyle int _{0}^{infty }{frac {e^{kx}-e^{lambda x}}{e^{mu x}-e^{ u x}}}\,dx={frac {1}{mu - u }}left(psi left({frac {mu -lambda }{mu - u }} ight)-psi left({frac {mu -k}{mu - u }} ight) ight)}{displaystyle int _{0}^{infty }{frac {e^{kx}-e^{lambda x}}{e^{mu x}-e^{
u x}}}\,dx={frac {1}{mu -
u }}left(psi left({frac {mu -lambda }{mu -
u }}
ight)-psi left({frac {mu -k}{mu -
u }}
ight)
ight)}
Beweis

Aus der Gaußschen Formel {displaystyle psi (z)+gamma =int _{0}^{1}{frac {1-u^{z-1}}{1-u}}\,du}{displaystyle psi (z)+gamma =int _{0}^{1}{frac {1-u^{z-1}}{1-u}}\,du}

folgt {displaystyle psi (1-eta )-psi (1-alpha )=int _{0}^{1}{frac {u^{-alpha }-u^{-eta }}{1-u}}\,du=int _{0}^{infty }{frac {e^{alpha x}-e^{eta x}}{e^{x}-1}}\,dxquad left({ ext{nach Substitution}}\,u=e^{-x} ight)}{displaystyle psi (1-eta )-psi (1-alpha )=int _{0}^{1}{frac {u^{-alpha }-u^{-eta }}{1-u}}\,du=int _{0}^{infty }{frac {e^{alpha x}-e^{eta x}}{e^{x}-1}}\,dxquad left({	ext{nach Substitution}}\,u=e^{-x}
ight)}.

Nun ist {displaystyle int _{0}^{infty }{frac {e^{kx}-e^{lambda x}}{e^{mu x}-e^{ u x}}}\,dx=int _{0}^{infty }{frac {e^{(k- u )x}-e^{(lambda - u )x}}{e^{(mu - u )x}-1}}\,dx={frac {1}{mu - u }}int _{0}^{infty }{frac {e^{{frac {k- u }{mu - u }}\,x}-e^{{frac {lambda - u }{mu - u }}\,x}}{e^{x}-1}}\,dx}{displaystyle int _{0}^{infty }{frac {e^{kx}-e^{lambda x}}{e^{mu x}-e^{
u x}}}\,dx=int _{0}^{infty }{frac {e^{(k-
u )x}-e^{(lambda -
u )x}}{e^{(mu -
u )x}-1}}\,dx={frac {1}{mu -
u }}int _{0}^{infty }{frac {e^{{frac {k-
u }{mu -
u }}\,x}-e^{{frac {lambda -
u }{mu -
u }}\,x}}{e^{x}-1}}\,dx}

{displaystyle ={frac {1}{mu - u }}left(psi left(1-{frac {lambda - u }{mu - u }} ight)-psi left(1-{frac {k- u }{mu - u }} ight) ight)={frac {1}{mu - u }}left(psi left({frac {mu -lambda }{mu - u }} ight)-psi left({frac {mu -k}{mu - u }} ight) ight)}{displaystyle ={frac {1}{mu -
u }}left(psi left(1-{frac {lambda -
u }{mu -
u }}
ight)-psi left(1-{frac {k-
u }{mu -
u }}
ight)
ight)={frac {1}{mu -
u }}left(psi left({frac {mu -lambda }{mu -
u }}
ight)-psi left({frac {mu -k}{mu -
u }}
ight)
ight)}

原文地址:https://www.cnblogs.com/Eufisky/p/14730791.html