【2011集训贾志鹏】Crash 的数字表格

题面

题目分析

(默认(n<m)

题目要求(sumlimits_{i=1}^nsumlimits_{j=1}^mlcm(i,j))

(lcm(i,j)=frac{icdot j}{gcd(i,j)})

得:

[egin{split} ans & =sumlimits_{i=1}^nsumlimits_{j=1}^mfrac{icdot j}{gcd(i,j)} \ & =sumlimits_{d=1}^nsumlimits_{i=1}^nsumlimits_{j=1}^mfrac{icdot j}{d}[gcd(i,j)==d]\ & = sumlimits_{d=1}^ndcdot sumlimits_{i=1}^{lfloorfrac{n}{d} floor}sumlimits_{j=1}^{lfloorfrac{m}{d} floor}icdot j[gcd(i,j)==1] end{split} ]

如果只看最后一部分,(sumlimits_{i=1}^{lfloorfrac{n}{d} floor}sumlimits_{j=1}^{lfloorfrac{m}{d} floor}icdot j[gcd(i,j)==1]),可以很自然想到莫比乌斯反演。


(以下(n,m,gcd)(lfloorfrac n d floor,lfloorfrac m d floor,lfloorfrac {gcd}d floor)

我们用(g(i))表示(gcd(i,j)==kcdot i,kin Z)的贡献,(f(i))表示(gcd(i,j)==i)的贡献。

于是有(g(x)=sumlimits_{x|d}^nf(d) Rightarrow f(x)=sumlimits_{x|d}^nmu(frac d x)cdot g(d))

只要可以快速求出(g(d))便可得到答案。

对于(g(x))

[egin{split} g(x)&=sumlimits_{i=1}^nsumlimits_{j=1}^micdot j[x|gcd(i,j)]\ &=xcdot xcdot sumlimits_{i=1}^{lfloorfrac{n}{x} floor}sumlimits_{j=1}^{lfloorfrac{m}{x} floor}icdot j[1|gcd(i,j)]\ &=xcdot xcdot sumlimits_{i=1}^{lfloorfrac{n}{x} floor}isumlimits_{j=1}^{lfloorfrac{m}{x} floor}j\ &=xcdot xcdot frac{(1+lfloorfrac{n}{x} floor)cdot lfloorfrac{n}{x} floor}{2}cdot frac{(1+lfloorfrac{m}{x} floor)cdot lfloorfrac{m}{x} floor}{2} end{split} ]


最终

[egin{split} ans &=sumlimits_{d=1}^n dcdot f(1)\ &=sumlimits_{d=1}^n dcdot sumlimits_{i=1}^{lfloorfrac n d floor}mu(i)cdot g(i)\ end{split} ]

你会发现,现在的时间复杂度还是有问题,这时候就需要整除分块求解。

P.S

加强版:【BZOJ2693】jzptab

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=1e7+5,mod=20101009;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int mu[N],prime[N],g[N];
bool vis[N];
int t(int x){return 1ll*x*(x+1)/2%mod;}
int f(int n,int m){
	if(n>m)swap(n,m);
	LL ans=0;
	for(int l=1,r;l<=n;l=r+1){
		r=min(n/(n/l),m/(m/l));
		ans=(ans+1ll*(g[r]-g[l-1])*t(n/l)%mod*t(m/l)%mod)%mod; 
	}
	return ans;
}
int main(){
	mu[1]=g[1]=1;
	for(int i=2;i<=1e7;i++){
		if(!vis[i])prime[++prime[0]]=i,mu[i]=-1;
		for(int j=1;j<=prime[0]&&1ll*i*prime[j]<=1e7;j++){
			vis[i*prime[j]]=1;
			if(i%prime[j]==0)break;
			mu[i*prime[j]]=-mu[i];
		}
		g[i]=(g[i-1]+1ll*i*i*mu[i]%mod)%mod;
	}
	
	int n=Getint(),m=Getint();
	if(n>m)swap(n,m);
	LL ans=0;
	for(int l=1,r;l<=n;l=r+1){
		r=min(n/(n/l),m/(m/l));
		ans=(ans+1ll*(l+r)*(r-l+1)/2%mod*f(n/l,m/l)%mod)%mod;
	}
	cout<<(ans+mod)%mod;
	return 0;
}
原文地址:https://www.cnblogs.com/Emiya-wjk/p/9995902.html