机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型

     本文简单整理了以下内容:

(一)线性回归

(二)二分类:二项Logistic回归

(三)多分类:Softmax回归

(四)广义线性模型 

      闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完《统计学习方法》第一章之后直接就跳去了第六章,好像是对“逻辑斯蒂”这个名字很感兴趣?。。。),对照《机器学习实战》写了几行代码敲了一个toy版本,当时觉得还是挺有意思的。我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开的地方)。更有意思的是那时候还不会矩阵微积分,推导梯度时还是把矩阵全都展开求然后再归纳成矩阵形式的(牛顿法要用的二阶梯度也是)。。。

      下面的文字中,“Logistic回归”都表示用于二分类的二项Logistic回归。

      首先约定一下记号。

      样本的特征矩阵 $X=( extbf x_1, extbf x_2,..., extbf x_N)=({ extbf x^{(1)}}^{ op};{ extbf x^{(2)}}^{ op};...;{ extbf x^{(d)}}^{ op})inmathbb R^{d imes N}$ ,$X_{ji}=x_i^{(j)}$;

      $N$ 是训练集的样本数,每个样本都表示成 $ extbf x_iinmathbb R^d$ 的列向量,真实标签为 $y_i$ ;如果出现了 $ extbf x$ 这样没有上下标的记号就泛指任一样本,相当于省略下标,真实标签为 $y$ ;特别地,对于二分类问题,$y$ 只可能取0、1两个值。

      $d$ 是特征的维数,每维特征都表示成 $ extbf x^{(j)}inmathbb R^N$ 的列向量;如果出现了 $x^{(j)}$ 这样的记号就泛指任一样本的第 $j$ 维特征,相当于省略下标;

      权重向量 $ extbf w=(w_1,w_2,...,w_d)^{ op}inmathbb R^d$ ,偏置 $binmathbb R$ 。

      $ extbf y$ 在本文可能表达两种含义:一种是表示全部训练样本的真实标签组成的列向量 $ extbf y=(y_1,y_2,...,y_N)^{ op}inmathbb R^N$ ;另一种含义则是表示样本 $ extbf x$ 的one-hot表示 $ extbf y=(0,0,...,0,1,0,...,0)^{ op}inmathbb R^C$(只有真实类别的那一维是1,其他维均是0),相当于 $ extbf y_i$ 省略了下标。

      可能看起来有点别扭,因为对于样本来说,下标是序号索引、上标是特征索引;而对于权重来说,下标是特征索引。

(一)线性回归

    1. 概述

      线性回归(Linear regression)就是用一个超平面去拟合样本点的标签:

$$f( extbf x)= extbf w^{ op} extbf x+b$$

      对于一维特征的情况,就是用一条直线去拟合样本点,如下图所示。为了方便起见,将偏置也记到权重向量中并保持记号不变,同时每个样本增加一维特征并保持记号不变:$ extbf w=(1,w_1,w_3,...,w_d)^{ op}$ ,$ extbf x=(1,x^{(1)},x^{(2)},...,x^{(d)})^{ op}$ ,$f( extbf x)= extbf w^{ op} extbf x$ 。

图片来源:[1]

      2. 求解

      对于回归任务,最常使用的损失函数是平方损失函数 $L(y,f( extbf x))=(y-f( extbf x))^2$ ,对应的经验风险就是均方误差(Mean square error,MSE)

$$mathcal R=frac1Nsum_{i=1}^N(y_i-f( extbf x_i))^2=frac1N|X^{ op} extbf w- extbf y|^2=frac1N(X^{ op} extbf w- extbf y)^{ op}(X^{ op} extbf w- extbf y)$$

该式的 $ extbf y$ 表示全部训练样本的真实标签组成的列向量 $ extbf y=(y_1,y_2,...,y_N)^{ op}inmathbb R^N$ 。

      解一:正规方程组(Normal equations可以直接用 $R$ 的一阶导数等于0来求极值点(省略常系数):

$$frac{partial mathcal R}{partial extbf w}=2X(X^{ op} extbf w- extbf y)=0Rightarrow extbf w=(XX^{ op})^{-1}X extbf y$$

      可以看出,这个不就是最小二乘法(Ordinary Least Squares,OLS解方程 $X^{ op} extbf w= extbf y$ 嘛。值得注意的是 $(XX^{ op})^{-1}X$ 其实就是 $X^{ op}$ 的伪逆,计算伪逆的复杂度很高。

      需要注意一个问题:$XX^{ op}$ 需要是可逆矩阵,也就是说每维特征之间线性无关,才可以求得唯一解。当其不可逆(特征个数比样本个数还要多)时,解不唯一,需要用梯度下降(Gradient descent)来迭代求解。另外,最小二乘法的结果总是低偏差高方差的。

    (注:部分求导法则,使用分母布局,维度为 $q$ 的列向量对维度为 $p$ 的列向量求导后得到的矩阵维数为 $p imes q$ 。关于矩阵求导,可以参考 [8] 。

图片来源:[1]

$$frac{partial A^{ op} extbf x}{partial extbf x}=frac{partial extbf x^{ op}A}{partial extbf x}=A$$

$$frac{partial extbf y^{ op} extbf z}{partial extbf x}=frac{partial extbf y}{partial extbf x} extbf z+frac{partial extbf z}{partial extbf x} extbf y$$

$$frac{partial extbf y^{ op}A extbf z}{partial extbf x}=frac{partial extbf y}{partial extbf x}A extbf z+frac{partial extbf z}{partial extbf x}A^{ op} extbf y$$

$$frac{partial y extbf z}{partial extbf x}=frac{partial y}{partial extbf x} extbf z^{ op}+yfrac{partial extbf z}{partial extbf x}$$

$$frac{partial ext{tr}AB}{partial A}=B^{ op}quadquadfrac{partial ext{tr}AB}{partial A^{ op}}=B$$

$$frac{partial f(A)}{partial A^{ op}}=(frac{partial f(A)}{partial A})^{ op}$$

      解二:最小均方误差(least mean squares,LMS)规则,也叫Widrow-Hoff规则,用梯度下降法求解。梯度在上面已经求出来了:

$$frac{partial mathcal R}{partial extbf w}=2X(X^{ op} extbf w- extbf y)=2X(hat{ extbf y}- extbf y)$$

该式的 $hat{ extbf y}$ 表示模型对全部训练样本的输出标签组成的列向量 $hat{ extbf y}=(hat y_1,hat y_2,...,hat y_N)^{ op}inmathbb R^N$ 。

这样的方式是每更新一次参数就要计算整个训练集上的梯度,是批梯度下降(batch GD);如果把这个过程拆成 $N$ 次,也就是每次只随机挑选一个样本计算梯度,就是随机梯度下降(Stochastic GD,SGD)。还有一种是mini-batch梯度下降,每次挑选一个小批量样本计算梯度。整个训练集计算完一次梯度称为“一轮”。

      3. 均方误差优化目标的概率解释

      重新考虑以下问题:设样本的特征和标签存在关系 $y_i= extbf w^{ op} extbf x_i+epsilon_i$ ,并假设每个 $epsilon_i$ 都是服从高斯分布的随机变量 $epsilonsim N(0,sigma^2)$ 的iid样本(之所以假设为高斯分布,是认为误差由多个独立的随机因素构成,根据多个独立随机变量之和趋于高斯分布,所以假设 $epsilon$ 服从高斯分布)。从而有

$$p(epsilon_i)=frac1{sqrt{2pi}sigma}exp(-frac{epsilon_i^2}{2sigma^2})$$

也就是说

$$p(y_i| extbf x_i; extbf w)=frac1{sqrt{2pi}sigma}exp(-frac{(y_i- extbf w^{ op} extbf x_i)^2}{2sigma^2})$$

用分号隔开是因为在频率学派的观点下 $ extbf w$ 不是随机变量。

      进一步用极大似然估计来求取参数 $ extbf w$ :对数似然函数为

$$l( extbf w)=logprod_{i=1}^Np(y_i| extbf x_i; extbf w)=logprod_{i=1}^Nfrac1{sqrt{2pi}sigma}exp(-frac{(y_i- extbf w^{ op} extbf x_i)^2}{2sigma^2})$$

再往后写一步就可以知道,极大似然估计和最小化均方误差是一致的。

      4. 局部加权回归(Locally weighted regression,LWR

      相比于普通的线性回归,LWR对于一个点来说使用其附近的点来做回归(而不是全部点)。

      相比于线性回归的优化目标 $sum_{i=1}^N(y_i- extbf w^{ op} extbf x_i)^2$ ,局部加权线性回归的优化目标为

$$sum_{i=1}^Nomega_i(y_i- extbf w^{ op} extbf x_i)^2$$

式中 $omega_i$ 就是非负值的权重,一个常用的选择为 $omega_i=exp(-frac{( extbf x_i- extbf x)^{ op}( extbf x_i- extbf x)}{2 au^2})$ ,$ au$ 是指定的带宽参数(bandwidth)。不难看出,LWR每预测一个点的值都要重新得到一个新的模型。

(二)二项Logistic回归

    1. 概述

      对于分类任务,一个可行的思路是把基于样本 $ extbf x$ 计算出的连续值 $z$(比如,线性加权值 $z= extbf w^{ op} extbf x$ )和离散的类别标签值联系起来。

      二项Logistic回归(Binomial logistic regression)是工业界应用非常广泛的一个经典的二分类模型。一般就叫逻辑回归,这里无意争论到底应该怎么翻译,虽然古人云“名不正则言不顺”,但提起“逻辑回归”大家都知道这是哪个东西,我觉得这就够了。对Logistic回归的历史感兴趣的朋友们可以看一下 [7] 的介绍。首先使用logistic函数 $sigma(cdot)$ 将 $ z$ 从实数空间 $(-infty,+infty)$ 映射到概率空间 $(0,1)$ 上,可以将映射之后的值 $sigma(z)$ 解释为样本 $ extbf x$ 属于正类(记类别标记为1)的可能性,也就是后验概率的估计值:

$$hat y=P(y=1| extbf x)=sigma(z)=frac{1}{1+exp(-z)}$$

      既然解释成后验概率,然后就可以给出分类规则(最大后验概率决策):当 $P(y=1| extbf x)>0.5$ ,认为样本 $ extbf x$ 属于正类;否则样本 $ extbf x$ 属于正类属于负类。

      下面两个图是一维特征、二分类的情况。大致说了线性回归为什么不可以用来分类。因为线性回归输出连续值,而类别标签只有0、1两个,所以需要人为设定一个阈值,将输出值与该值比较大小,从而来判断模型将样本分到哪一类,而这个阈值会受到离群点(outlier)的牵制,因为线性回归的拟合曲线会因为离群点而受到较大影响,所以不好确定;相比之下,logistic回归不会受到图示离群点的牵制。

图片来源:[5]、[1]

      待补充:为什么使用logistic函数归到区间 $(0,1)$ 之后就可以解释成概率了。

      2. 决策边界

      下面说一下决策边界。当 $P(y=1| extbf x)=0.5$ 时,意味着 $z=0$ ,这就是决策边界的方程。换句话说,$z$ 的形式决定了逻辑回归的决策面是线性的还是非线性的。如果 $z= extbf w^{ op} extbf x$ ,那决策面当然是线性的;但是如果 $z$ 的形式并不是特征的线性组合,而是非线性的形式,当然也可以是非常复杂的决策面。

图片来源:[1]

      下面我们只讨论线性决策面的情况。Logistic回归模型为:

$$hat y=P(y=1| extbf x)=sigma( extbf w^{ op} extbf x)=frac{exp( extbf w^{ op} extbf x)}{1+exp( extbf w^{ op} extbf x)}$$

$$P(y=0| extbf x)=1-sigma( extbf w^{ op} extbf x)=frac{1}{1+exp( extbf w^{ op} extbf x)}$$

      稍加变换就可以看出Logistic回归和线性回归的区别:

      线性回归是用 $ extbf w^{ op} extbf x$ 去拟合 $y$ ;二项Logistic回归则是去拟合 $ln dfrac{hat y}{1-hat y}$ ,换句话说就是在拟合对数几率(log-odds,几率是样本属于正类的可能性与属于负类的可能性的比值)。也就是说,二项Logistic回归在对对数几率做回归,进而转化为解决分类问题。

      3. 求解

      (1)经验风险最小化:极大似然估计

      logistic函数 $sigma(cdot)$ 的导函数为 $sigma'(cdot)=sigma(cdot)odot ( extbf 1-sigma(cdot))$ 。也就是说当自变量为向量时,函数对逐元素进行计算,输出同维度的向量。

      首先从经验风险最小化的角度推导参数的求解过程。使用交叉熵损失函数(单标签情况下就是对数损失函数),模型对一个样本 $( extbf x,y)$ 的对数损失为:

$$egin{aligned}mathcal L&=-iggl(yln P(y=1| extbf x)+(1-y)ln P(y=0| extbf x)iggr)\&=-iggl(ylnfrac{exp( extbf w^{ op} extbf x)}{1+exp( extbf w^{ op} extbf x)}+(1-y)lnfrac{1}{1+exp( extbf w^{ op} extbf x)}iggr)\&=-iggl(y extbf w^{ op} extbf x-ln(1+exp( extbf w^{ op} extbf x))iggr)end{aligned}$$

      所以经验风险为:

$$mathcal R=frac1Nsum_{i=1}^Nmathcal L_i=-frac1Nsum_{i=1}^Niggl(y_i extbf w^{ op} extbf x_i-ln(1+exp( extbf w^{ op} extbf x_i))iggr)$$

      如果不加正则的话,优化目标为上式最小化。前面的系数 $dfrac1N$ 也就是训练样本数的倒数,是定值,去掉后不影响优化目标。 

      从极大似然估计的角度也可以推出等价的优化目标:对数似然函数为

$$egin{aligned}l( extbf w)&=ln[prod_{i=1}^NP(y_i| extbf x_i; extbf w)]\&=ln[prod_{i=1}^NP(y_i=1| extbf x_i)^{y_i}P(y_i=0| extbf x_i)^{1-y_i}]\&=sum_{i=1}^Niggl(y_iln P(y_i=1| extbf x_i)+(1-y_i)ln P(y_i=0| extbf x_i)iggr)end{aligned}$$

该式最大化就等价于经验风险最小化。

      由于优化目标求不出解析解,但它是高阶连续可微的凸函数,所以可以用迭代的方法,如梯度下降法(GD)。

      因为SGD每次迭代是随机选择一个样本,所以这里先求取模型对一个样本的损失的梯度(经验风险的梯度无非就是加个求和号再除以训练样本数而已):

$$frac{partial mathcal L}{partial extbf w}=-iggl(y extbf x- extbf xfrac{exp( extbf w^{ op} extbf x)}{1+exp( extbf w^{ op} extbf x)}iggr)$$

可以发现其实它就是个特别简单的形式:

$$frac{partial mathcal L}{partial extbf w}=-(y-hat y) extbf x$$

      经验风险的梯度可以写成矩阵的形式( $ extbf y$ 表示训练集样本的真实标签组成的列向量),省略系数 $dfrac1N$ :

$$egin{aligned}frac{partial mathcal R}{partial extbf w}&=-sum_{i=1}^N (y_i-sigma( extbf w^{ op} extbf x_i)) extbf x_i\&= -X( extbf y-sigma(X^{ op} extbf w))\&= -X( extbf y-hat{ extbf y})end{aligned}$$

可以很容易把这种批处理GD的形式改写成mini-batch SGD的形式。

      不难看出,这个梯度形式和线性回归是一样的。(后面会知道,Softmax回归的梯度形式和它们也是一样的。)

      这里顺便把二阶梯度也求一下,可以使用牛顿法或拟牛顿法来迭代求取参数:

$$frac{partial mathcal L}{partial extbf w}=-(y-sigma( extbf w^{ op} extbf x)) extbf x=sigma( extbf w^{ op} extbf x) extbf x -y extbf x$$

$$egin{aligned}frac{partial^2mathcal L}{partial extbf w^2}&=frac{partial(sigma( extbf w^{ op} extbf x) extbf x -y extbf x)}{partial extbf w}\&=frac{sigma( extbf w^{ op} extbf x)}{partial extbf w} extbf x^{ op}\&=sigma( extbf w^{ op} extbf x)(1-sigma( extbf w^{ op} extbf x)) extbf x extbf x^{ op}\&=hat y(1-hat y) extbf x extbf x^{ op}end{aligned}$$

$$frac{partial^2mathcal R}{partial extbf w^2}=sum_{i=1}^Nhat y_i(1-hat y_i) extbf x_i extbf x_i^{ op}$$

      (2)结构风险最小化:最大后验概率估计

      如果将正则项加上,那就是用结构风险最小化的准则来学习参数,常用的有参数的 $L_1$ 范数(LASSO)和 $L_2$ 范数(Ridge):

$$R_{ ext{srm}}=R+lambda| extbf w|_1$$

$$R_{ ext{srm}}=R+lambda| extbf w|_2^2$$

从梯度的形式来看,相比于不加正则的时候,变化量为

$$frac{partial | extbf w|_1}{partial w_j}=frac{partial sum_{j=1}^d|w_j|}{partial w_j}=1 ext{ if }w_j>0 ext{ else if }w_j<0\,-1$$

$$frac{partial | extbf w|_2^2}{partial w_j}=frac{partial sum_{j=1}^d|w_j|^2}{partial w_j}=2w_j$$

如果 $w_j$ 为正,那么新迭代点相比之前会减去一个正数而变小;如果 $w_j$ 为负,那么新迭代点相比之前会减去一个负数而变大。也就是说避免了特别大或者特别小的权重值出现,可以使权重的绝对值变小,从而避免过于依赖某些特征的情况,减轻过拟合。

      加 $L_1$ 正则时会使某些维的参数变成0,这就是所谓的稀疏解,相当于进行了一个特征选择的过程;加 $L_2$ 正则时权重的绝对值会变小,起到平滑化的作用。更详细地可以参考[4]。

      4. 贝叶斯角度

      如果从贝叶斯估计的角度来说,正则项相当于加上了先验知识:加 $L_1$ 正则相当于是认为参数服从Laplace分布,加 $L_2$ 正则相当于是认为参数服从均值为0、协方差为 $frac{1}{lambda}$ 的高斯分布。此时,结构风险最小化等价于最大后验概率估计。具体可以参考[6][9]。

      5. 与其他模型的关系

      最显然的一个就是全连接的前馈神经网络就是多层Logistic回归模型(不知道为什么被叫成MLP,多层感知机)。其与朴素贝叶斯的联系可以看本系列博客第二篇。更详细地请参考 [7] ,后面有空的话会简单谈一点。

      6. 并行

      这里参考[7]。

      

(三)Softmax回归

      Softmax回归可以用于多类分类问题,而不像Logistic回归等二分类模型那样需要借助One-vs-rest。设样本 $ extbf x_i$ 的真实类别标签 $y_iin{1,2,...,C}$ ,one-hot向量为 $ extbf y_i=(0,0,...,0,1,0,...,0)^{ op}inmathbb R^C$ (只有真实类别的那一维是1)。

      与Logistic回归类似,Softmax回归输出的是样本 $ extbf x_i$ 属于各个类别的后验概率的估计值 $P(y_i=c| extbf x_i),cin{1,2,...,C}$ :

$$z_c= extbf w_c^{ op} extbf x_i$$

$$egin{aligned}P(y_i=c| extbf x_i)&= ext{softmax}(z_c)\&=frac{exp(z_c)}{sum_{j=1}^Cexp(z_j)}\&=frac{exp( extbf w_c^{ op} extbf x_i)}{sum_{j=1}^Cexp( extbf w_j^{ op} extbf x_i)},quad cin{1,2,...,C}end{aligned}$$

      将模型对一个样本 $( extbf x_i, extbf y_i)$ 的后验概率估计组成列向量

$$hat{ extbf y}_i=(P(y_i=1| extbf x),P(y_i=2| extbf x),...,P(y_i=C| extbf x))^{ op}inmathbb R^C$$

并将各个类别的权重向量 $ extbf w_cinmathbb R^d$ 组成权重矩阵 $W=( extbf w_1, extbf w_2,..., extbf w_C)inmathbb R^{d imes C}$ ,可以写成如下形式:

$$ extbf z_i=(z_1,z_2,...,z_C)^{ op}=W^{ op} extbf x_i$$

$$egin{aligned}hat{ extbf y}_i&= ext{softmax}( extbf z_i)=frac{exp( extbf z_i)}{sum_{j=1}^Cexp(z_j)}\&=frac{exp(W^{ op} extbf x_i)}{sum_{j=1}^Cexp( extbf w_j^{ op} extbf x)}=frac{exp(W^{ op} extbf x_i)}{ extbf 1^{ op}exp(W^{ op} extbf x_i)}\&=frac{exp( extbf z_i)}{ extbf 1^{ op}exp( extbf z_i)}end{aligned}$$

      使用交叉熵损失函数,模型对一个样本 $( extbf x_i, extbf y_i)$ 的损失为:

$$mathcal L_i=- extbf y_i^{ op}lnhat{ extbf y}_i=- extbf y_i^{ op}ln ext{softmax}( extbf z_i)=- extbf y_i^{ op}lnfrac{exp( extbf z_i)}{ extbf 1^{ op}exp( extbf z_i)}$$

所以经验风险(省略系数 $dfrac1N$ )为

$$mathcal R=sum_{i=1}^Nmathcal L_i=-sum_{i=1}^Niggl( extbf y_i^{ op}ln ext{softmax}(W^{ op} extbf x_i)iggr)$$

      下面求取对一个样本 $( extbf x_i, extbf y_i)$ 的损失的梯度。先上结论:

$$frac{partial mathcal L_i}{partial extbf w_c}=-[ extbf y_i-hat{ extbf y}_i]_c extbf x_i,quad cin{1,2,...,C}$$

$$frac{partial mathcal L_i}{partial W}=- extbf x_i( extbf y_i-hat{ extbf y}_i)^{ op}$$

式中 $[ extbf y_i]_c$ 表示的是向量 $ extbf y_i$ 的第 $c$ 维元素的值。

      经验风险的梯度依旧可以写成矩阵的形式:

$$frac{partial mathcal R}{partial W}=sum_{i=1}^Nfrac{partial mathcal L_i}{partial W}=-X(Y-hat Y)$$

其中 $Yinmathbb R^{N imes C}$ 是one-hot标签构成的矩阵,每一行都是一个样本的one-hot标签;$hat Y$ 含义类似。

      Softmax回归的 $dfrac{partial mathcal L_i}{partial extbf w_c}$ 的形式和Logistic回归的 $dfrac{partial mathcal L_i}{partial extbf w}$ 是一样的。

      下面给出推导过程。

      $dfrac{partial mathcal L_i}{partial extbf w_c}$ 的求法有三种:

      (1)普通方法,一步步推,可以参考我很早之前写的一篇讲word2vec的博客,我觉得写的还挺清楚的;

      (2)[1] 中的方法,在第三章;

      (3)[3] 中的方法,而且用这个方法可以直接把 $dfrac{partial mathcal L_i}{partial W}$ 求出来。

      $dfrac{partial mathcal L_i}{partial W}$ 推导方式可以是用 $dfrac{partial mathcal L_i}{partial extbf w_c}$ “拼”成对矩阵 $W$ 的梯度。下面使用 [3] 里面介绍的技巧,直接求对矩阵 $W$ 的梯度。

      [3] 介绍的是这样形式的求导:已知矩阵 $X$ ,函数 $f(X)$ 的函数值为标量,求 $dfrac{partial f}{partial X}$ 。一种典型的例子就是求取损失对权重矩阵的导数。

      对于一元微积分,$ ext{d}f=f'(x) ext{d}x$ ;多元微积分,$ ext{d}f=sum_idfrac{partial f}{partial x_i} ext{d}x_i=(dfrac{partial f}{partial extbf x})^{ op} ext{d} extbf x$;由此建立矩阵导数和微分的联系:

$$ ext{d}f=sum_{i,j}frac{partial f}{partial X_{ij}} ext{d}X_{ij}= ext{tr}((frac{partial f}{partial X})^{ op} ext{d}X)$$

      上式第二个等号成立是因为对于两个同阶方阵有 $ ext{tr}(A^{ op}B)=sum_{i,j}A_{ij}B_{ij}$ 。求解的流程就是,先求微分 $ ext{d}f$ 表达式,然后再套上迹(因为标量的迹等于标量本身),然后再把表达式 $ ext{tr}( ext{d}f)$ 和 $ ext{tr}((dfrac{partial f}{partial X})^{ op} ext{d}X)$ 进行比对,进而把 $dfrac{partial f}{partial X}$ 给“挖”出来。

      所以,问题就从求梯度转化成了求微分。求微分当然少不了很多法则和技巧,下面随着讲随着介绍。接下来就来求取Softmax回归中的 $dfrac{partial mathcal L}{partial W}$ (样本序号 $i$ 被省略)。

      首先求取 $ ext{d}mathcal L$ 。

$$egin{aligned}mathcal L&=- extbf y^{ op}lnfrac{exp( extbf z)}{ extbf 1^{ op}exp( extbf z)}\&=- extbf y^{ op}( extbf z-lnegin{pmatrix} extbf 1^{ op}exp( extbf z) \ extbf 1^{ op}exp( extbf z) \ vdots \ extbf 1^{ op}exp( extbf z)end{pmatrix})quad extbf 1^{ op}exp( extbf z) ext{是标量}\&=ln( extbf 1^{ op}exp( extbf z))- extbf y^{ op} extbf zend{aligned}$$

      根据法则 $ ext{d}(g(X))=g'(X)odot ext{d}X$ 、$ ext{d}(XY)=( ext{d}X)Y+X( ext{d}Y)$,可得

$$ ext{d}(ln( extbf 1^{ op}exp( extbf z)))=frac{1}{ extbf 1^{ op}exp( extbf z)}odot ext{d}( extbf 1^{ op}exp( extbf z))$$

$$ ext{d}( extbf 1^{ op}exp( extbf z))= extbf 1^{ op} ext{d}(exp( extbf z))= extbf 1^{ op}(exp( extbf z)odot ext{d} extbf z)$$

      所以

$$ ext{d}mathcal L=frac{ extbf 1^{ op}(exp( extbf z)odot ext{d} extbf z)}{ extbf 1^{ op}exp( extbf z)}- extbf y^{ op} ext{d} extbf z$$

      现在可以套上迹,根据恒等式 $ ext{tr}(A^{ op}(Bodot C))= ext{tr}((Aodot B)^{ op}C)=sum_{i,j}A_{ij}B_{ij}C_{ij}$ ,可得

$$egin{aligned} ext{d}mathcal L&= ext{tr}(frac{( extbf 1odot exp( extbf z))^{ op} ext{d} extbf z}{ extbf 1^{ op}exp( extbf z)})- ext{tr}( extbf y^{ op} ext{d} extbf z)\&= ext{tr}(iggl(frac{(exp( extbf z))^{ op}}{ extbf 1^{ op}exp( extbf z)}- extbf y^{ op}iggr) ext{d} extbf z)\&= ext{tr}((hat{ extbf y}- extbf y)^{ op} ext{d} extbf z)\&= ext{tr}((frac{partial L}{partial extbf z})^{ op} ext{d} extbf z)end{aligned}$$

      现在已经成功了一半,因为已经有了 $dfrac{partial mathcal L}{partial extbf z}$ 。因为

$$ ext{d} extbf z= ext{d}(W^{ op} extbf x)=( ext{d}W^{ op}) extbf x+W^{ op} ext{d} extbf x=( ext{d}W^{ op}) extbf x$$

并且 $ ext{tr}(ABC)= ext{tr}(BCA)= ext{tr}(CAB)$ ,所以有

$$egin{aligned} ext{d}mathcal L&= ext{tr}((frac{partial L}{partial extbf z})^{ op}( ext{d}W^{ op}) extbf x)\&= ext{tr}( extbf x(frac{partial L}{partial extbf z})^{ op} ext{d}W^{ op})\&= ext{tr}((frac{partial L}{partial W^{ op}})^{ op} ext{d}W^{ op})end{aligned}$$

也就是说,$dfrac{partial mathcal L}{partial W^{ op}}=dfrac{partial mathcal L}{partial extbf z} extbf x^{ op}=(hat{ extbf y}- extbf y) extbf x^{ op}$,所以

$$frac{partial mathcal L}{partial W}=- extbf x( extbf y-hat{ extbf y})^{ op}$$

(四)广义线性模型

      其实上面介绍的三种模型,都属于广义线性模型(Generalized linear model,GLM)。

      1. 指数族分布

      说到GLM,就不得不说指数族分布。设有一随机变量 $Y$ ,观测值为 $y$ ,那么指数族分布(Exponential family distributions)的 PDF/PMF 为如下函数:

$$p(y;oldsymboleta)=b(y)exp(oldsymboleta^{ op}T(y)-a(oldsymboleta))$$

      式中,$oldsymboleta$ 被称为nature parameter或canonical parameter,$T(y)$ 是充分统计量(通常设 $T(y)=y$ ),$a(oldsymboleta)$ 是log partition function,$exp(-a(oldsymboleta))$ 用来保证PDF的积分为1(或PMF的加和为1)。把随机变量服从指数族分布记为 $ Ysim ExponentialFamily(oldsymboleta)$ 。伯努利分布(两点分布)、高斯分布、多项式分布、泊松分布、指数分布、伽马分布、贝塔分布、狄利克雷分布、维希特分布……等等都属于指数族分布。

      通过选取不同的 $oldsymboleta$ ,可以得到不同的分布:

      例如,对于参数为 $phi$ 两点分布,其PMF为

$$P(y;phi)=phi^y(1-phi)^{1-y}=exp(yln(frac{phi}{1-phi})+ln(1-phi))$$

所以

$$phi=frac{1}{1+exp(-eta)}$$

这正是logistic函数。

      再比如参数为均值 $mu$ 、方差1的高斯分布,其PDF为

$$p(y;mu)=frac{1}{sqrt{2pi}}exp(-frac12(y-mu)^2)=frac{1}{sqrt{2pi}}exp(-frac12y^2)exp(mu y-frac12mu^2)$$

所以

$$mu=eta$$

      2. 广义线性模型

      通过指数族分布,可以构建广义线性模型。设模型的参数为 $oldsymbol heta$ ,对于记 $X$ 、$Y$ 分别是代表特征和标签的随机变量,观测值为 $ extbf x$ 、$y$ 。首先假定如下三点:

      1. 条件分布服从指数族分布,即 $Y|X;oldsymbol hetasim ExponentialFamily(oldsymboleta)$ 。例如,

      2. 给定特征 $ extbf x$ ,目标是预测 $E[T(y)| extbf x]$ 。因为通常设  $T(y)=y$ ,所以目标就是预测 $E[y| extbf x]$ 。

         实际上,就相当于对模型输出值进行预测。用Logistic回归举例:模型输出值为 $P(y=1| extbf x)$ ,随机变量 $Y$ 服从两点分布(只可能取0、1两个值),所以 $E[y| extbf x;oldsymbol heta]=0 imes P(y=0| extbf x)+1 imes P(y=1| extbf x)=P(y=1| extbf x)$

      3. 指数族分布的参数 $oldsymboleta$ 和给定特征 $ extbf x$ 的关系为线性:$oldsymboleta=oldsymbol heta^{ op} extbf x$

      下面可以开始利用不同的 $oldsymboleta$ 来构建GLM。

      (1)线性回归

      对于第一个假设,设指数族分布是参数为 $mu$ 的高斯分布,即 $mu=eta$ ;那么对于第二个假设,可知模型输出值为 $mu$ ,结合第一个假设可知模型输出值为 $eta$ ;根据第三个假设 $oldsymboleta=oldsymbol heta^{ op} extbf x$ ,可知模型输出值为 $oldsymbol heta^{ op} extbf x$ 。这就推导出了线性回归模型。

      (2)Logistic回归

      对于第一个假设,设指数族分布是参数为 $phi$ 的伯努利分布,即 $phi=frac{1}{1+exp(-eta)}$ ;那么对于第二个假设,因为伯努利分布的期望为 $phi$ ,可知模型输出值为 $phi$ ;根据第三个假设 $oldsymboleta=oldsymbol heta^{ op} extbf x$ ,可知模型输出值为 $phi=frac{1}{1+exp(-oldsymbol heta^{ op} extbf x)}$ 。这就推导出了Logistic回归模型。

      (3)Softmax回归

      相应的指数族分布是多项式分布,代表标签的是一个随机向量 $oldsymbol Y$ 。详细的推导这里就不赘述了,可以参考 [5] 的最后一部分。

参考资料:

[1] 《神经网络与深度学习讲义》

[2] 《统计学习方法》

[3] 《矩阵求导术(上)》

[4] 机器学习中的范数规则化之(一)L0、L1与L2范数

[5] CS229 Lecture Notes1、Lecture6 slides

[6] Regularized Regression: A Bayesian point of view

[7] 浅析Logistic Regression   (写的比我这篇真的好太多了。。。)   

[8] Matrix_calculus

[9] https://www.evernote.com/shard/s146/sh/bf0d0a08-d5c5-4dc9-b70f-fa6374b9ceae/14e34bc9e8e518b1a5cc17fc585d75fc

 

原文地址:https://www.cnblogs.com/Determined22/p/6362951.html