kernel task_struct


struct task_struct {

	struct thread_info		thread_info;
	
	volatile long			state; 					/* -1 unrunnable, 0 runnable, >0 stopped: */


	
	void				*stack;						/* 堆指针 */
	atomic_t			usage;						/* 	进程描述符使用计数,被置为2时,表示进
														程描述符正在被使用而且
														其相应的进程处于活动状态 */
	
	unsigned int			flags; 					/* Per task flags (PF_*), defined further below: */
	unsigned int			ptrace;				   	/* ptrace系统调用,成员ptrace被设置为0时表示不需要被跟踪 */

	/* SMP CPU: */
	struct llist_node		wake_entry;
	int				on_cpu; 						/* 在SMP上帮助实现无加锁的进程切换 */
	unsigned int			cpu;
	/* end: */
	
	unsigned int			wakee_flips;
	unsigned long			wakee_flip_decay_ts;
	struct task_struct		*last_wakee;

	/*
	 * recent_used_cpu is initially set as the last CPU used by a task
	 * that wakes affine another task. Waker/wakee relationships can
	 * push tasks around a CPU where each wakeup moves to the next one.
	 * Tracking a recently used CPU allows a quick search for a recently
	 * used CPU that may be idle.
	 */
	int				recent_used_cpu;
	int				wake_cpu;
#endif
	int				on_rq;

	int				prio, static_prio, normal_prio;  /* prio: 调度器考虑的优先级保存在prio*/
													 /* static_prio: 用于保存进程的"静态优先级*/
													 /* normal_prio: 表示基于进程的"静态优先级"和"调度策略"计算出的优先级*/
	unsigned int			rt_priority;			 /* rt_priority:表示实时进程的优先级,需要明白的是,
														"实时进程优先级"和"普通进程优先级"有两个独立的范畴,
														实时进程即使是最低优先级也高于普通进程,最低的实时优先级为0,
														最高的优先级为99,值越大,表明优先级越高*/
														

	const struct sched_class	*sched_class;		 /* sched_class: 该进程所属的调度类*/
	
	struct sched_entity		se;
	struct sched_rt_entity		rt;					 /* rt: 用于实时进程的调用实体 */

	struct task_group		*sched_task_group;		 /* 组调度*/	

	struct sched_dl_entity		dl;


	/* List of struct preempt_notifier: */
	struct hlist_head		preempt_notifiers;



	unsigned int			btrace_seq;


	unsigned int			policy;   				/* policy表示进程的调度策略 */
	int				nr_cpus_allowed;
	cpumask_t			cpus_allowed;

							#ifdef CONFIG_PREEMPT_RCU   /* RCU同步原语 */
								int				rcu_read_lock_nesting;
								union rcu_special		rcu_read_unlock_special;
								struct list_head		rcu_node_entry;
								struct rcu_node			*rcu_blocked_node;
							#endif /* #ifdef CONFIG_PREEMPT_RCU */

							#ifdef CONFIG_TASKS_RCU
								unsigned long			rcu_tasks_nvcsw;
								u8				rcu_tasks_holdout;
								u8				rcu_tasks_idx;
								int				rcu_tasks_idle_cpu;
								struct list_head		rcu_tasks_holdout_list;
							#endif /* #ifdef CONFIG_TASKS_RCU */

	struct sched_info		sched_info;			/* sched_info:用于调度器统计进程的运行信息*/

	struct list_head		tasks;				/* 通过list_head将当前进程的task_struct串联进内核的进程列表中,
												   构建;linux进程链表*/
	struct plist_node		pushable_tasks; 	/ *    limit pushing to one attempt */
	struct rb_node			pushable_dl_tasks;

	struct mm_struct		*mm;				/* mm: 指向进程所拥有的内存描述符*/
	struct mm_struct		*active_mm;			/* active_mm: active_mm指向进程运行时所使用的内存描述符*/

	/* Per-thread vma caching: */
	struct vmacache			vmacache;

								#ifdef SPLIT_RSS_COUNTING
									struct task_rss_stat		rss_stat;
								#endif
	int				exit_state;					/* 进程退出状态码*/
	int				exit_code;					/* exit_code :用于设置进程的终止代号,
												   这个值要么是_exit()或exit_group()
												   系统调用参数(正常终止),
												   要么是由内核提供的一个错误代号(异常终止)*/
	int				exit_signal;				/* exit_signal被置为-1时表示是某个线程组中的一员。
												   只有当线程组的最后一个成员终止时,
												   才会产生一个信号,以通知线程组的领头进程的父进程*/
	
	int				pdeath_signal;				/* pdeath_signal用于判断父进程终止时发送信号 */
	
	/* JOBCTL_*, siglock protected: */
	unsigned long			jobctl;

	
	unsigned int			personality;		/* Used for emulating ABI behavior 
												   of previous Linux versions: */
	                                            /* personality用于处理不同的ABI */

	/* Scheduler bits, serialized by scheduler locks: */
	unsigned			sched_reset_on_fork:1;
	unsigned			sched_contributes_to_load:1;
	unsigned			sched_migrated:1;
	unsigned			sched_remote_wakeup:1;
										#ifdef CONFIG_PSI
											unsigned			sched_psi_wake_requeue:1;
										#endif

	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

	/* in_execve用于通知LSM是否被do_execve()函数所调用 */
	unsigned			in_execve:1;	
	unsigned			in_iowait:1;			/* in_iowait用于判断是否进行iowait计数 */
										#ifndef TIF_RESTORE_SIGMASK
											unsigned			restore_sigmask:1;
										#endif

											unsigned			in_user_fault:1;

										#ifdef CONFIG_COMPAT_BRK
											unsigned			brk_randomized:1;
										#endif
										#ifdef CONFIG_CGROUPS
											/* disallow userland-initiated cgroup migration */
											unsigned			no_cgroup_migration:1;
										#endif
										#ifdef CONFIG_BLK_CGROUP
											/* to be used once the psi infrastructure lands upstream. */
											unsigned			use_memdelay:1;
										#endif

	unsigned long			atomic_flags; /* Flags requiring atomic access. */

	struct restart_block		restart_block;

	pid_t				pid;			
	pid_t				tgid;
							进程标识符(PID)
							在CONFIG_BASE_SMALL配置为0的情况下,PID的取值范围是0到32767,即系统中的进程数最大为32768个
							#define PID_MAX_DEFAULT (CONFIG_BASE_SMALL ? 0x1000 : 0x8000)  
							在Linux系统中,一个线程组中的所有线程使用和该线程组的领头线程
							(该组中的第一个轻量级进程)相同的PID,并被存放在tgid成员中。
							只有线程组的领头线程的pid成员才会被设置为与tgid相同的值。
							注意,getpid()系统调用返回的是当前进程的tgid值而不是pid值


	/* 防止内核堆栈溢出,在GCC编译内核时,需要加上-fstack-protector选项 */
	unsigned long			stack_canary;

	/*
	 * Pointers to the (original) parent process, youngest child, younger sibling,
	 * older sibling, respectively.  (p->father can be replaced with
	 * p->real_parent->pid)
	 */
	
	/* 表示进程亲属关系的成员*/
	struct task_struct __rcu	*real_parent;			/* 指向其父进程,如果创建它的父进程不再存在,则指向PID为1的init进程 */

	/* Recipient of SIGCHLD, wait4() reports: */
	struct task_struct __rcu	*parent;				/* parent: 指向其父进程,当它终止时,必须向它的父进程发送信号。
														   它的值通常与real_parent相同*/

	/*
	 * Children/sibling form the list of natural children:
	 */
	struct list_head		children;					/* children: 表示链表的头部,链表中的所有元素都是它的子进程(子进程链表)*/
	struct list_head		sibling;					/* sibling: 用于把当前进程插入到兄弟链表中(连接到父进程的子进程链表(兄弟链表)*/
	struct task_struct		*group_leader;				/* group_leader: 指向其所在进程组的领头进程*/

	/*
	 * 'ptraced' is the list of tasks this task is using ptrace() on.
	 *
	 * This includes both natural children and PTRACE_ATTACH targets.
	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
	 */
	struct list_head		ptraced;
	struct list_head		ptrace_entry;

	/* PID/PID hash table linkage. */
	struct pid			*thread_pid;
	struct hlist_node		pid_links[PIDTYPE_MAX];			/* PID散列表和链表*/
	struct list_head		thread_group;					/* 线程组中所有进程的链表*/
	struct list_head		thread_node;

	/* do_fork函数*/
	struct completion		*vfork_done;					/* 在执行do_fork()时,如果给定特别标志,则vfork_done会指向一个特殊地址*/

	/* CLONE_CHILD_SETTID: */
	int __user			*set_child_tid;

	/* CLONE_CHILD_CLEARTID: */
	int __user			*clear_child_tid;
	/* 如果copy_process函数的clone_flags参数的值被置为CLONE_CHILD_SETTID或CLONE_CHILD_CLEARTID,
	则会把child_tidptr参数的值分别复制到set_child_tid和clear_child_tid成员。
	这些标志说明必须改变子进程用户态地址空间的child_tidptr所指向的变量的值*/

	u64				utime;
	u64				stime;
	u64				utimescaled;
	u64				stimescaled;
		/* 	1) utime
			用于记录进程在"用户态"下所经过的节拍数(定时器)
			2) stime
			用于记录进程在"内核态"下所经过的节拍数(定时器)
			3) utimescaled
			用于记录进程在"用户态"的运行时间,但它们以处理器的频率为刻度
			4) stimescaled
			用于记录进程在"内核态"的运行时间,但它们以处理器的频率为刻度*/
	u64				gtime;		/* 以节拍计数的虚拟机运行时间(guest time)*/
	struct prev_cputime		prev_cputime;	/* prev_utime、prev_stime是先前的运行时间*/
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
	struct vtime			vtime;
#endif

#ifdef CONFIG_NO_HZ_FULL
	atomic_t			tick_dep_mask;
#endif
	/* Context switch counts: */
	unsigned long			nvcsw;		/* 自愿(voluntary)上下文切换计数*/
	unsigned long			nivcsw;		/* 非自愿(involuntary)上下文切换计数*/

	/* Monotonic time in nsecs: */
	u64				start_time;			/* 进程创建时间*/

	/* Boot based time in nsecs: */
	u64				real_start_time;	/* 进程睡眠时间,还包含了进程睡眠时间,常用于/proc/pid/stat*/

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
	unsigned long			min_flt;
	unsigned long			maj_flt;

#ifdef CONFIG_POSIX_TIMERS	/* 用来统计进程或进程组被跟踪的处理器时间,其中的三个成员对应着cpu_timers[3]的三个链表*/
	struct task_cputime		cputime_expires;
	struct list_head		cpu_timers[3];
#endif

						/* Process credentials: */

						/* Tracer's credentials at attach: */
						const struct cred __rcu		*ptracer_cred;

						/* Objective and real subjective task credentials (COW): */
						const struct cred __rcu		*real_cred;

						/* Effective (overridable) subjective task credentials (COW): */
						const struct cred __rcu		*cred;

						/*
						 * executable name, excluding path.
						 *
						 * - normally initialized setup_new_exec()
						 * - access it with [gs]et_task_comm()
						 * - lock it with task_lock()
						 */
						char				comm[TASK_COMM_LEN];

						struct nameidata		*nameidata;

						#ifdef CONFIG_SYSVIPC	/* 进程通信(SYSVIPC)*/
							struct sysv_sem			sysvsem;	
							struct sysv_shm			sysvshm;
						#endif
						#ifdef CONFIG_DETECT_HUNG_TASK
							unsigned long			last_switch_count;
							unsigned long			last_switch_time;
						#endif
	/* Filesystem information: */
	struct fs_struct		*fs;		/* 用来表示进程与文件系统的联系,包括当前目录和根目录*/

	/* Open file information: */
	struct files_struct		*files;		/* 表示进程当前打开的文件*/

	/* 命名空间 : */		/* 进程通信(SYSVIPC)*/
	struct nsproxy			*nsproxy;

	/* Signal handlers: */
	struct signal_struct		*signal;		/* signal: 指向进程的信号描述符*/
	struct sighand_struct		*sighand;		/* sighand: 指向进程的信号处理程序描述符*/
	sigset_t			blocked;				/* 表示被阻塞信号的掩码*/
	sigset_t			real_blocked;			/* 表示临时掩码*/
	/* Restored if set_restore_sigmask() was used: */
	sigset_t			saved_sigmask;
	struct sigpending		pending;			/* 存放私有挂起信号的数据结构*/
	unsigned long			sas_ss_sp;			/* 信号处理程序备用堆栈的地址*/
	size_t				sas_ss_size;			/* 表示堆栈的大小*/
	unsigned int			sas_ss_flags;

	struct callback_head		*task_works;
			/* 进程审计 */
			struct audit_context		*audit_context;
		#ifdef CONFIG_AUDITSYSCALL
			kuid_t				loginuid;
			unsigned int			sessionid;	
		#endif
	struct seccomp			seccomp;	/* secure computing*/

	/* Thread group tracking: */	/* 用于copy_process函数使用CLONE_PARENT标记时 */
	u32				parent_exec_id;
	u32				self_exec_id;

	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
	spinlock_t			alloc_lock;		/* 用于保护资源分配或释放的自旋锁*/

	/* Protection of the PI data structures: */
	raw_spinlock_t			pi_lock;	* task_rq_lock函数所使用的锁*/

	struct wake_q_node		wake_q;

					#ifdef CONFIG_RT_MUTEXES	/* 基于PI协议的等待互斥锁,其中PI指的是priority inheritance/9优先级继承)*/
						/* PI waiters blocked on a rt_mutex held by this task: */
						struct rb_root_cached		pi_waiters;	
						/* Updated under owner's pi_lock and rq lock */
						struct task_struct		*pi_top_task;
						/* Deadlock detection and priority inheritance handling: */
						struct rt_mutex_waiter		*pi_blocked_on;
					#endif

					#ifdef CONFIG_DEBUG_MUTEXES
						/* Mutex deadlock detection: */
						struct mutex_waiter		*blocked_on;	/* 死锁检测*/
					#endif

					#ifdef CONFIG_TRACE_IRQFLAGS	/* 中断*/
						unsigned int			irq_events;
						unsigned long			hardirq_enable_ip;
						unsigned long			hardirq_disable_ip;
						unsigned int			hardirq_enable_event;
						unsigned int			hardirq_disable_event;
						int				hardirqs_enabled;
						int				hardirq_context;
						unsigned long			softirq_disable_ip;
						unsigned long			softirq_enable_ip;
						unsigned int			softirq_disable_event;
						unsigned int			softirq_enable_event;
						int				softirqs_enabled;
						int				softirq_context;
					#endif

#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH			48UL		/* lockdep*/
	u64				curr_chain_key;
	int				lockdep_depth;
	unsigned int			lockdep_recursion;
	struct held_lock		held_locks[MAX_LOCK_DEPTH];
#endif

#ifdef CONFIG_UBSAN
	unsigned int			in_ubsan;
#endif

	/* Journalling filesystem info: JFS文件系统 */
	void				*journal_info;

	/* Stacked block device info: 块设备链表*/
	struct bio_list			*bio_list;

#ifdef CONFIG_BLOCK
	/* Stack plugging: */
	struct blk_plug			*plug;
#endif

	/* VM state:内存回收 */
	struct reclaim_state		*reclaim_state;
	/* 存放块设备I/O数据流量信息*/
	struct backing_dev_info		*backing_dev_info;
	/* I/O调度器所使用的信息 */
	struct io_context		*io_context;

	/* Ptrace state: */
	unsigned long			ptrace_message;
	kernel_siginfo_t		*last_siginfo;

	struct task_io_accounting	ioac;
					#ifdef CONFIG_PSI
						/* Pressure stall state */
						unsigned int			psi_flags;
					#endif
					#ifdef CONFIG_TASK_XACCT
						/* Accumulated RSS usage: */
						u64				acct_rss_mem1;
						/* Accumulated virtual memory usage: */
						u64				acct_vm_mem1;
						/* stime + utime since last update: */
						u64				acct_timexpd;
					#endif
					#ifdef CONFIG_CPUSETS
						/* Protected by ->alloc_lock: */
						nodemask_t			mems_allowed;
						/* Seqence number to catch updates: */
						seqcount_t			mems_allowed_seq;
						int				cpuset_mem_spread_rotor;
						int				cpuset_slab_spread_rotor;
					#endif
					#ifdef CONFIG_CGROUPS
						/* Control Group info protected by css_set_lock: */
						struct css_set __rcu		*cgroups;
						/* cg_list protected by css_set_lock and tsk->alloc_lock: */
						struct list_head		cg_list;
					#endif
					#ifdef CONFIG_X86_CPU_RESCTRL
						u32				closid;
						u32				rmid;
					#endif
					#ifdef CONFIG_FUTEX
						struct robust_list_head __user	*robust_list;
					#ifdef CONFIG_COMPAT
						struct compat_robust_list_head __user *compat_robust_list;
					#endif
						struct list_head		pi_state_list;
						struct futex_pi_state		*pi_state_cache;
					#endif
					#ifdef CONFIG_PERF_EVENTS
						struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
						struct mutex			perf_event_mutex;
						struct list_head		perf_event_list;
					#endif
					#ifdef CONFIG_DEBUG_PREEMPT
						unsigned long			preempt_disable_ip;
					#endif
#ifdef CONFIG_NUMA
	/* Protected by alloc_lock: */
	struct mempolicy		*mempolicy;
	short				il_prev;
	short				pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
	int				numa_scan_seq;
	unsigned int			numa_scan_period;
	unsigned int			numa_scan_period_max;
	int				numa_preferred_nid;
	unsigned long			numa_migrate_retry;
	/* Migration stamp: */
	u64				node_stamp;
	u64				last_task_numa_placement;
	u64				last_sum_exec_runtime;
	struct callback_head		numa_work;

	struct numa_group		*numa_group;

	/*
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
	 */
	unsigned long			*numa_faults;
	unsigned long			total_numa_faults;

	/*
	 * numa_faults_locality tracks if faults recorded during the last
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
	 */
	unsigned long			numa_faults_locality[3];

	unsigned long			numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */

#ifdef CONFIG_RSEQ
	struct rseq __user *rseq;
	u32 rseq_len;
	u32 rseq_sig;
	/*
	 * RmW on rseq_event_mask must be performed atomically
	 * with respect to preemption.
	 */
	unsigned long rseq_event_mask;
#endif

	struct tlbflush_unmap_batch	tlb_ubc;

	struct rcu_head			rcu;

	/* Cache last used pipe for splice():管道  */
	struct pipe_inode_info		*splice_pipe;	

	struct page_frag		task_frag;

#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;		/* 延迟计数*/
#endif

#ifdef CONFIG_FAULT_INJECTION
	int				make_it_fail;
	unsigned int			fail_nth;
#endif
	/*
	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for a dirty throttling pause:
	 */
	int				nr_dirtied;
	int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
	unsigned long			dirty_paused_when;

#ifdef CONFIG_LATENCYTOP
	int				latency_record_count;
	struct latency_record		latency_record[LT_SAVECOUNT];
#endif
	/*
	 * Time slack values; these are used to round up poll() and
	 * select() etc timeout values. These are in nanoseconds.
	 *	 time slack values,常用于poll和select函数
	 */
	u64				timer_slack_ns;
	u64				default_timer_slack_ns;

#ifdef CONFIG_KASAN
	unsigned int			kasan_depth;
#endif

#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	/* Index of current stored address in ret_stack: */
	int				curr_ret_stack;
	int				curr_ret_depth;

	/* Stack of return addresses for return function tracing:ftrace跟踪器 */
	struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
	unsigned long long		ftrace_timestamp;

	/*
	 * Number of functions that haven't been traced
	 * because of depth overrun:
	 */
	atomic_t			trace_overrun;

	/* Pause tracing: */
	atomic_t			tracing_graph_pause;
#endif

#ifdef CONFIG_TRACING
	/* State flags for use by tracers: */
	unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
	unsigned long			trace_recursion;
#endif /* CONFIG_TRACING */

#ifdef CONFIG_KCOV
	/* Coverage collection mode enabled for this task (0 if disabled): */
	unsigned int			kcov_mode;

	/* Size of the kcov_area: */
	unsigned int			kcov_size;

	/* Buffer for coverage collection: */
	void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
	struct kcov			*kcov;
#endif

#ifdef CONFIG_MEMCG
	struct mem_cgroup		*memcg_in_oom;
	gfp_t				memcg_oom_gfp_mask;
	int				memcg_oom_order;

	/* Number of pages to reclaim on returning to userland: */
	unsigned int			memcg_nr_pages_over_high;

	/* Used by memcontrol for targeted memcg charge: */
	struct mem_cgroup		*active_memcg;
#endif

#ifdef CONFIG_BLK_CGROUP
	struct request_queue		*throttle_queue;
#endif

#ifdef CONFIG_UPROBES
	struct uprobe_task		*utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
	unsigned int			sequential_io;
	unsigned int			sequential_io_avg;
#endif
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
	unsigned long			task_state_change;
#endif
	int				pagefault_disabled;
#ifdef CONFIG_MMU
	struct task_struct		*oom_reaper_list;
#endif
#ifdef CONFIG_VMAP_STACK
	struct vm_struct		*stack_vm_area;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/* A live task holds one reference: */
	atomic_t			stack_refcount;
#endif
#ifdef CONFIG_LIVEPATCH
	int patch_state;
#endif
#ifdef CONFIG_SECURITY
	/* Used by LSM modules for access restriction: */
	void				*security;
#endif

#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
	unsigned long			lowest_stack;
	unsigned long			prev_lowest_stack;
#endif





	randomized_struct_fields_start 				/*M 随机分布,可以提高系统安全,防止黑客入侵 */
	randomized_struct_fields_end

	/* CPU-specific state of this task: Do not put anything below here! */
	struct thread_struct		thread;

	
};

 sched_class: 该进程所属的调度类,目前内核中有实现以下四种: 
            1) static const struct sched_class fair_sched_class;
			2) static const struct sched_class rt_sched_class;
            3) static const struct sched_class idle_sched_class;
            4) static const struct sched_class stop_sched_class;
		
 policy
    policy表示进程的调度策略,目前主要有以下五种:
        1) #define SCHED_NORMAL        0: 用于普通进程,它们通过完全公平调度器来处理
        2) #define SCHED_FIFO        1: 先来先服务调度,由实时调度类处理
        3) #define SCHED_RR            2: 时间片轮转调度,由实时调度类处理
        4) #define SCHED_BATCH        3: 用于非交互、CPU使用密集的批处理进程,通过完全公平调度器来处理,调度决策对此类进程给与"冷处理",它们绝不会抢占CFS调度器处理的另一个进程,因此不会干扰交互式进程,如果不打算用nice降低进程的静态优先级,同时又不希望该进程影响系统的交互性,最适合用该调度策略
        5) #define SCHED_IDLE        5: 可用于次要的进程,其相对权重总是最小的,也通过完全公平调度器来处理。要注意的是,SCHED_IDLE不负责调度空闲进程,空闲进程由内核提供单独的机制来处理
    只有root用户能通过sched_setscheduler()系统调用来改变调度策略 
    */

原文地址:https://www.cnblogs.com/DemonMaster/p/11783530.html