吴恩达机器学习笔记一_单变量线性回归

单变量线性回归

纲要

  • 代价函数
  • 梯度下降算法
  • 全局最优与局部最优

代价函数

函数定义:

[J( heta_0, heta_1,...)=frac{1}{2m}sum_{i=1}^{n}(h_ heta(x^{(i)})-y^{(i)})^{2} ]

代价函数是为了寻找假设函数(h( heta))上的最佳参数( heta),以期得到一个更符合实际情况的假设函数。

梯度下降算法

数学公式定义:

[ heta_j := heta_j - alphafrac{delta}{delta heta_j}J( heta_0, heta_1,..., heta_n) ]

其中(alpha)是学习率Learning Rate,而(frac{delta}{delta heta_j})就是代价函数(J( heta))的斜率。

梯度下降算法是在函数某一点上寻找下降最快的途径,然后递归在下一个点中继续寻找。由于斜率越接近局部最优点时越小,所以它的下降速度也会越来越小。梯度下降算法对各个参数的优化是同时的,所表现的形式如下:

(temp0 := heta_0 - alphafrac{delta}{delta heta_0}J( heta_0, heta_1,..., heta_n))
(temp1 := heta_1 - alphafrac{delta}{delta heta_1}J( heta_0, heta_1,..., heta_n))
( heta_0 := temp0)
( heta_1 := temp1)

可以看出,梯度算法需要同步更新各个参数变量。同时,梯度下降算法寻找的是一个局部最优点,而线性回归模型存在全局最优点,因此它需要尽可能地遍历所有的训练集,从所有的局部最优点中比较出全局最优点。

局部最优和全局最优

我想用NG课件里的几幅图可以很好的表示这两个概念:

这是其中一个局部最优途径

这是另一个局部最优途径

线性回归模型存在全局最优

参考

Coursera机器学习笔记——单变量线性回归

原文地址:https://www.cnblogs.com/ChanWunsam/p/9635009.html