数论 初步

0x01 整除

概念:(a, b in mathbb Z)(a eq 0),如果 (exists q in mathbb Z),使得 (a imes q = b),则 (b) 能被 (a) 整除,记为 (a mid b)


性质:

1. 传递性:如果 (a mid b)(b mid c),则 (a mid c)

2.(a mid b)(a mid c) 则对于 (forall a, b in mathbb Z),有 (a mid (bx+cy))

3.(m) 不为 (0),则 (a mid b) 等价于 (ma mid mb)

4.(x,y in mathbb Z) 满足下式:(ax+by=1),且 (a mid n)(b mid n),那么 (ab mid n)

5.(exists b, q, d, c in mathbb Z)(b = q imes d + c),那么 (d mid b)(d mid c) 可以互推。


证明:

1.(b = ak_a(k_a in mathbb Z)),且 (c = bk_b(k_b in mathbb Z))

则有 (c = (ak_a)k_b)

(c = k_ak_ba)

其中 (k_a, k_b in mathbb Z)

(∴ a mid c)


2.(b = ak_b(k_b in mathbb Z)),且 (c = ak_c(k_c in mathbb Z))

(∴ bx + cy = (ak_b)x + (ak_c)y)

(bx + cy = a(k_bx + k_cy))

其中 (k_b, k_c, x, y in mathbb Z)

(∴ (k_bx + k_cy) in mathbb Z)

(a mid (bx+cy))


3.(b = ak_b(k_b in mathbb Z))

(∴ mb = mak_b (k_b in mathbb Z))

(m in mathbb Z, m eq 0)

(∴ ma mid mb)


4. (∵ ax + by = 1)

(∴ frac x b + frac y a = frac 1 {ab})

(∴ frac n {ab} = frac {xn} b + frac {ny} a)

又由题: (ak_a = n, bk_b = n(k_a, k_b in mathbb Z))

(∴ frac n {ab} = k_ay + k_bx)

(n = ab(k_ay + k_bx))

(∵ k_a, k_b, x, y in mathbb Z)

(∴ ab mid n)


5.1

(b = d * k_b(k_b in mathbb Z))

(∴ dk_b = qd + c)

(d(k_b - q) = c)

(∵ k_b, q in mathbb Z)

(∴ (k_b - q) in mathbb Z)

(d mid c)


5.2(c = d * k_c(k_c in mathbb Z))

(∴ b = qd + qk_c)

(d(k_c + q) = b)

(∵ k_c, q in mathbb Z)

(∴ (k_c + q) in mathbb Z)

(d mid b)


0x02 mod

概念: 对于(a,b in mathbb Z, b eq 0),求 (a) 除以 (b) 的余数,称为 (a)(b),记为 (a mod b)


性质: 暂且研究 (a > 0, b geq 0)

0. 杂论:((a + kb) mod b = a mod b)

1. 分配率:模运算对加、减、乘具有分配率

1.1 ((a + b) mod c = (a mod c + b mod c) mod c)

1.2 ((a - b) mod c = (a mod c - b mod c) mod c)

1.3 ((a imes b) mod c = [(a mod c) imes (b mod c)] mod c)

1.4 ((a^b) mod c = (a mod c)^b mod c)

2. 放缩性:

2.1 如果 (a mod b = c, d eq 0),则有 ((a imes d) mod (b imes d) = c imes d)

2.2 如果 (a mod b = c, d eq 0),则有 (frac a d mod frac b d = frac c d)


证明:

0.1 (a < b)

(x = a + kb)

根据 (mod) 的定义,(x mod b = a)

所以 ((a + kb) mod b = a)


0.2 (a geqslant b)

(∴(a + kb) mod b = [(a - lfloor frac a b floor imes b) + (k + lfloor frac a b floor)b] mod b)

由定义得:(a mod b = a - lfloor frac a b floor imes b)

(∴[(a - lfloor frac a b floor imes b) + (k + lfloor frac a b floor)b] mod b = [a mod b + (k + lfloor frac a b floor)b] mod b)

(∵ a mod b < b)

然后用 0.1 解决即可。


1.1(a = c * q_a + r_a, b = c * q_b + r_b (q_a, q_b, r_a, r_b in mathbb Z, r_a,rb < c))

(∴ (a + b) mod c = (c * q_a + r_a + c * q_b + r_b) mod c)

((a + b) mod c = [r_a + r_b + (q_a + q_b)c] mod c)

0 得:((a + b) mod c = (r_a + r_b) mod c))

(∵r_a = a mod c, r_b = b mod c)

(∴ (a + b) mod c = (a mod c + b mod c) mod c)


1.2(a = c * q_a + r_a, b = c * q_b + r_b (q_a, q_b, r_a, r_b in mathbb Z, r_a,rb < c))

(∴ (a - b) mod c = (c * q_a + r_a - c * q_b - r_b) mod c)

((a - b) mod c = [r_a - r_b + (q_a - q_b)c] mod c)

0 得:((a - b) mod c = (r_a - r_b) mod c))

(∵r_a = a mod c, r_b = b mod c)

(∴ (a - b) mod c = (a mod c - b mod c) mod c)


1.3(a = c * q_a + r_a, b = c * q_b + r_b (q_a, q_b, r_a, r_b in mathbb Z, r_a,rb < c))

(∴ (a * b) mod c = [(c * q_a + r_a) * (c * q_b + r_b)] mod c)

(∴ (a * b) mod c = (q_aq_bc^2 + q_ar_bc + q_br_ac + r_ar_b) mod c)

即 $ (a * b) mod c = [r_a * r_b + c(q_aq_bc + q_ar_b + q_br_a)] mod c$

0 得:((a * b) mod c = (r_a * r_b) mod c))

(∵r_a = a mod c, r_b = b mod c)

(∴ (a imes b) mod c = [(a mod c) imes (b mod c)] mod c)


1.4

1.3 得:

((a^b) mod c = (a imes a^{b - 1}) mod c = [(a mod c) imes (a ^ {b - 1} mod c)] mod c)

((a^b) mod c = [(a mod c) imes (a mod c) imes (a ^ {b - 2} mod c)] mod c)

(...)

((a^b) mod c = [(a mod c) imes (a mod c) ... imes (a mod c)] mod c)


2.1(a = b imes q_a + c)

$∴ (a imes d) mod (b imes d) = (cd + bdq_a) mod bd $

(∵ a mod b = c)

(∴ c < b)

(∵ d > 0)

(∴ cd < bd)

(∴)0.1 得:((a imes d) mod (b imes d) = (cd + bdq_a) mod bd = cd)


2.1(a = b imes q_a + c)

$∴ frac a d mod frac b d = (frac c d + frac {bq_a} d) mod frac b d $

(∵ a mod b = c)

(∴ c < b)

(∵ d > 0)

(∴ frac c d < frac b d)

(∴)0.1 得:(frac a d mod frac b d = (frac c d + frac {bq_a} d) mod frac b d = frac c d)


0x03 同余

概念:(m) 为给定正整数,若满足 (m mid (a - b), a, b in mathbb Z),则称 (a)(b)(m) 同余。记作 (a equiv b pmod m)


性质

0. 一些基本性质:

0.1 反身性:(a equiv a pmod m)

0.2 对称性:(a equiv b pmod m),则 (b equiv a pmod m)

0.3 传递性:(a equiv b pmod m),则 (b equiv c pmod m),则 (a equiv c pmod m)

1. 同加性:若 (a equiv b pmod m),则 (a + c equiv b + c pmod m)

2. 同减性:若 (a equiv b pmod m),则 (a - c equiv b - c pmod m)

3. 同乘性:若 (a equiv b pmod m),则 (a imes c equiv b imes c pmod m)

4. 同除性:若 (a equiv b pmod m, c mid a, c mid b, (c, m) = 1),则 (frac a c equiv frac b c pmod m)

5. 同幂性:若 (a equiv b pmod m),则 (a^c equiv b^c pmod m)

6.(a mod p = x, a mod q = x, (p, q) = 1),则 (a mod (p imes q) = x)


1. 由题:(m mid (a - b))

(∴ m mid [(a + c) - (b + c)])

(∴ a + c equiv b + c pmod m)


2. 由题:(m mid (a - b))

(∴ m mid [(a - c) - (b - c)])

(∴ a - c equiv b - c pmod m)


3. 由题:(m mid (a - b))

(∴ m mid [ac - bc])

(∴ a imes c equiv b imes c pmod m)


4.(a = k_ac, b = k_bc)

(∴ p mid (k_a - k_b)c)

(∵ (c, p) = 1)

(∴ p mid (k_a - k_b))

(∴ pc mid (k_ac - k_bc))

(pc mid (a - b))

(∴ p mid frac {a - b} c)

(p mid (frac a c - frac b c))

(∴frac a c equiv frac b c pmod m)


5. 由题:(m mid (a - b))

(∴ a^c - b^c = (a - b)(a^{c - 1} + a^{c - 2}b + ... + ab^{c - 2} + b^{c - 1}))

(∵a, b in mathbb Z)

(∴ (a^{c - 1} + a^{c - 2}b + ... + ab^{c - 2} + b^{c - 1}) in mathbb Z)

(∴ (a - b) mid (a^c - b^c))

(∴ m mid (a^c - b^c))

(a^c equiv b^c pmod m)


6. (∵ a mod p = x, a mod q = x)

(∴p mid (a - x), q mid (a - x))

(∴ a - x = pk_p, a - x = qk_q(k_p, k_q in mathbb Z))

(pk_p = qk_q)

(∵(p, q) = 1)

(∴ k_p = kq(k in mathbb Z))

(∴ a - x = pqk)

(pq mid a - x)

(a mod (p imes q) = x)

原文地址:https://www.cnblogs.com/Chain-Forward-Star/p/13868327.html