列表和元组

列表和元组

在Python中,最基本的数据结构为序列(sequence)。
序列中的每个元素都有编号,即其位置或索引,其中第一个元素的索引为0,第二个元素的索引为1,依此类推。
从0开始指出相对于序列开头的偏移量。这显得更自然,同时可回绕到序列末尾,用负索引表示序列末尾元素的位置。
元组是一种特殊的序列,类似于列表,只是不能修改。

2.1 序列概述

Python内置了多种序列,最常用的两种:列表和元组。
另一种重要的序列是字符串,将在下一章更详细地讨论。
列表和元组的主要不同在于,列表是可以修改的,而元组不可以。这意味着列表适用于需要
中途添加元素的情形,而元组适用于出于某种考虑需要禁止修改序列的情形。
禁止修改序列通常出于技术方面的考虑,与Python的内部工作原理相关,这也是有些内置函数返回元组的原因所在。
字典键是不允许修改的。
在需要处理一系列值时,序列很有用。在数据库中,你可能使用序列来表示人,其中第一个
元素为姓名,而第二个元素为年龄。如果使用列表来表示(所有元素都放在方括号内,并用逗号隔开),将类似于下面这样:

>>> edward = ['Edward Gumby', 42] 

序列还可包含其他序列,因此可创建一个由数据库中所有人员组成的列表:

>>> edward = ['Edward Gumby', 42] 
>>> john = ['John Smith', 50] 
>>> database = [edward, john] 
>>> database 
[['Edward Gumby', 42], ['John Smith', 50]]

Python支持一种数据结构的基本概念,名为容器(container)。容器基本上就是可包含其
他对象的对象。两种主要的容器是序列(如列表和元组)和映射(如字典)。在序列中,
每个元素都有编号,而在映射中,每个元素都有名称(也叫键)。映射将在第4章详细讨
论。有一种既不是序列也不是映射的容器,它就是集合(set),将在第10章讨论。

2.2 通用的序列操作

有几种操作适用于所有序列,包括索引、切片、相加、相乘和成员资格检查。另外,Python
还提供了一些内置函数,可用于确定序列的长度以及找出序列中最大和最小的元素。

有一个重要的操作这里不会介绍,它就是迭代(iteration)。对序列进行迭代意味着对其
每个元素都执行特定的操作。有关迭代的详细信息,请参阅5.5节。

2.2.1 索引

不同于其他一些语言,Python没有专门用于表示字符的类型,因此一个字符就是只包含一个元素的字符串。

索引(indexing)。你可使用索引来获取元素。这种索引方式适用于所有序列。当你使
用负数索引时,Python将从右(即从最后一个元素)开始往左数,因此1是最后一个元素的位置。

对于字符串字面量(以及其他的序列字面量),可直接对其执行索引操作,无需先将其赋给
变量。这与先赋给变量再对变量执行索引操作的效果是一样的。

>>> 'Hello'[1] 
'e'

如果函数调用返回一个序列,可直接对其执行索引操作。例如,如果你只想获取用户输入的
年份的第4位,可像下面这样做:

>>> fourth = input('Year: ')[3] 
Year: 2005 
>>> fourth 
'5' 
# 将以数指定年、月、日的日期打印出来
months = [ 
 'January', 
 'February', 
 'March', 
 'April', 
 'May', 
 'June', 
 'July', 
 'August', 
 'September', 
 'October', 
 'November', 
 'December' 
] 
# 一个列表,其中包含数1~31对应的结尾
endings = ['st', 'nd', 'rd'] + 17 * ['th']  
 + ['st', 'nd', 'rd'] + 7 * ['th']  
 + ['st'] 
year = input('Year: ') 
month = input('Month (1-12): ') 
day = input('Day (1-31): ') 
month_number = int(month) 
day_number = int(day) 
# 别忘了将表示月和日的数减1,这样才能得到正确的索引
month_name = months[month_number-1] 
ordinal = day + endings[day_number-1] 
print(month_name + ' ' + ordinal + ', ' + year) 

这个程序的运行情况类似于下面这样:

Year: 1974 
Month (1-12): 8 
Day (1-31): 16 
August 16th, 1974

2.2.2 切片

除使用索引来访问单个元素外,还可使用切片(slicing)来访问特定范围内的元素。为此,
可使用两个索引,并用冒号分隔:

>>> tag = '<a href="http://www.python.org">Python web site</a>' 
>>> tag[9:30] 
'http://www.python.org' 
>>> tag[32:-4] 
'Python web site'

如你所见,切片适用于提取序列的一部分,其中的编号非常重要:第一个索引是包含的第一
个元素的编号,但第二个索引是切片后余下的第一个元素的编号。
简而言之,你提供两个索引来指定切片的边界,其中第一个索引指定的元素包含在切片内,
但第二个索引指定的元素不包含在切片内。

    1. 绝妙的简写
      假设你要访问前述数字列表中的最后三个元素,显然可以明确地指定这一点。
>>> numbers[7:10] 
[8, 9, 10]

在这里,索引10指的是第11个元素:它并不存在,但确实是到达最后一个元素后再前进一步
所处的位置。明白了吗?如果要从列表末尾开始数,可使用负数索引。

>>> numbers[-3:-1] 
[8, 9]

然而,这样好像无法包含最后一个元素。如果使用索引0,即到达列表末尾后再前进一步所
处的位置,结果将如何呢?

>>> numbers[-3:0] 
[] 

结果并不是你想要的。事实上,执行切片操作时,如果第一个索引指定的元素位于第二个索
引指定的元素后面(在这里,倒数第3个元素位于第1个元素后面),结果就为空序列。好在你能
使用一种简写:如果切片结束于序列末尾,可省略第二个索引。

>>> numbers[-3:] 
[8, 9, 10]

同样,如果切片始于序列开头,可省略第一个索引。

>>> numbers[:3] 
[1, 2, 3]

实际上,要复制整个序列,可将两个索引都省略。

>>> numbers[:] 
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
    1. 更大的步长
      执行切片操作时,你显式或隐式地指定起点和终点,但通常省略另一个参数,即步长。在普
      通切片中,步长为1。这意味着从一个元素移到下一个元素,因此切片包含起点和终点之间的所
      有元素。
>>> numbers[0:10:1] 
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

在这个示例中,指定了另一个数。你可能猜到了,这显式地指定了步长。如果指定的步长大
于1,将跳过一些元素。例如,步长为2时,将从起点和终点之间每隔一个元素提取一个元素。

>>> numbers[0:10:2] 
[1, 3, 5, 7, 9] 
numbers[3:6:3] 
[4] 

显式地指定步长时,也可使用前述简写。例如,要从序列中每隔3个元素提取1个,只需提供
步长4即可。

>>> numbers[::4] 
[1, 5, 9]

当然,步长不能为0,否则无法向前移动,但可以为负数,即从右向左提取元素

>>> numbers[8:3:-1] 
[9, 8, 7, 6, 5] 
>>> numbers[10:0:-2] 
[10, 8, 6, 4, 2] 
>>> numbers[0:10:-2] 
[] 
>>> numbers[::-2] 
[10, 8, 6, 4, 2] 
>>> numbers[5::-2] 
[6, 4, 2] 
>>> numbers[:5:-2] 
[10, 8]

在这种情况下,要正确地提取颇费思量。如你所见,第一个索引依然包含在内,而第二个索
引不包含在内。步长为负数时,第一个索引必须比第二个索引大。可能有点令人迷惑的是,当你
省略起始和结束索引时,Python竟然执行了正确的操作:步长为正数时,它从起点移到终点,而
步长为负数时,它从终点移到起点。

2.2.3 序列相加

可使用加法运算符来拼接序列。

>>> [1, 2, 3] + [4, 5, 6] 
[1, 2, 3, 4, 5, 6] 
>>> 'Hello,' + 'world!' 
'Hello, world!' 
>>> [1, 2, 3] + 'world!' 
Traceback (innermost last): 
 File "<pyshell>", line 1, in ? 
 [1, 2, 3] + 'world!' 
TypeError: can only concatenate list (not "string") to list 

从错误消息可知,不能拼接列表和字符串,虽然它们都是序列。
一般而言,不能拼接不同类型的序列。

2.2.4 乘法

将序列与数x相乘时,将重复这个序列x次来创建一个新序列

>>> 'python' * 5 
'pythonpythonpythonpythonpython' 
>>> [42] * 10 
[42, 42, 42, 42, 42, 42, 42, 42, 42, 42]

None、空列表和初始化
空列表是使用不包含任何内容的两个方括号([])表示的。如果要创建一个可包含10个元素
的列表,但没有任何有用的内容,可像前面那样使用[42]10。但更准确的做法是使用[0]10,
这将创建一个包含10个零的列表。然而,在有些情况下,你可能想使用表示“什么都没有”的值,
如表示还没有在列表中添加任何内容。在这种情况下,可使用None。
在Python中,None表示什么都没有。
因此,要将列表的长度初始化为10,可像下面这样做:

>>> sequence = [None] * 10 
>>> sequence 
[None, None, None, None, None, None, None, None, None, None]

2.2.5 成员资格

要检查特定的值是否包含在序列中,可使用运算符in。这个运算符与前面讨论的运算符(如
乘法或加法运算符)稍有不同。它检查是否满足指定的条件,并返回相应的值:
满足时返回True,
不满足时返回False。
这样的运算符称为布尔运算符,而前述真值称为布尔值。
下面是一些in运算符的使用示例:

>>> permissions = 'rw' 
>>> 'w' in permissions 
True 
>>> 'x' in permissions 
False 
>>> users = ['mlh', 'foo', 'bar'] 
>>> input('Enter your user name: ') in users 
Enter your user name: mlh 
True 
>>> subject = '$$$ Get rich now!!! $$$' 
>>> '$$$' in subject 
True

开头两个示例使用成员资格测试分别检查'w'和'x'是否包含在字符串变量permissions中。在
UNIX系统中,可在脚本中使用这两行代码来检查对文件的写入和执行权限。接下来的示例检查
提供的用户名mlh是否包含在用户列表中,这在程序需要执行特定的安全策略时很有用(在这种
情况下,可能还需检查密码)。最后一个示例检查字符串变量subject是否包含字符串'$$$',这
可用于垃圾邮件过滤器中。

相比于其他示例,检查字符串是否包含'$$$'的示例稍有不同。一般而言,运算符in检查
指定的对象是否是序列(或其他集合)的成员(即其中的一个元素),但对字符串来说,
只有它包含的字符才是其成员或元素,因此下面的代码完全合理:

>>> 'P' in 'Python' 
True

事实上,在较早的Python版本中,只能对字符串执行这种成员资格检查——确定指定的
字符是否包含在字符串中,但现在可使用运算符in来检查指定的字符串是否为另一个字
符串的子串。

2.3 列表:Python 的主力

列表是可变的,即可修改其内容。
另外,列表有很多特有的方法。

2.3.1 函数 list

鉴于不能像修改列表那样修改字符串,因此在有些情况下使用字符串来创建列表很有帮助
为此,可使用函数list①。

它实际上是一个类,而不是函数,list类。

>>> list('Hello') 
['H', 'e', 'l', 'l', 'o']

请注意,可将任何序列(而不仅仅是字符串)作为list的参数。

要将字符列表(如前述代码中的字符列表)转换为字符串,可使用下面的表达式:
''.join(somelist)
其中somelist是要转换的列表。

2.3.2 基本的列表操作

可对列表执行所有的标准序列操作,如索引、切片、拼接和相乘,但列表的有趣之处在于它
是可以修改的。本节将介绍一些修改列表的方式:给元素赋值、删除元素、给切片赋值以及使用
列表的方法。

  1. 修改列表:给元素赋值
    修改列表很容易,只需使用第1章介绍的普通赋值语句即可,但不是使用类似于x = 2这样的
    赋值语句,而是使用索引表示法给特定位置的元素赋值,如x[1] = 2。
>>> x = [1, 1, 1] 
>>> x[1] = 2 
>>> x 
[1, 2, 1]

不能给不存在的元素赋值,因此如果列表的长度为2,就不能给索引为100的元素赋值。
要这样做,列表的长度至少为101。请参阅本章前面的“None、空列表和初始化”一节。

  1. 删除元素
    从列表中删除元素也很容易,只需使用del语句即可。
>>> names = ['Alice', 'Beth', 'Cecil', 'Dee-Dee', 'Earl'] 
>>> del names[2] 
>>> names 
['Alice', 'Beth', 'Dee-Dee', 'Earl'] 

注意到Cecil彻底消失了,而列表的长度也从5变成了4。除用于删除列表元素外,del语句还
可用于删除其他东西。你可将其用于字典(参见第4章)乃至变量,有关这方面的详细信息,请
参阅第5章。
3. 给切片赋值
切片是一项极其强大的功能,而能够给切片赋值让这项功能显得更加强大。

>>> name = list('Perl') 
>>> name 
['P', 'e', 'r', 'l'] 
>>> name[2:] = list('ar') 
>>> name 
['P', 'e', 'a', 'r']

从上述代码可知,可同时给多个元素赋值。你可能认为,这有什么大不了的,分别给每个元
素赋值不是一样的吗?确实如此,但通过使用切片赋值,可将切片替换为长度与其不同的序列

>>> name = list('Perl') 
>>> name[1:] = list('ython') 
>>> name 
['P', 'y', 't', 'h', 'o', 'n']

使用切片赋值还可在不替换原有元素的情况下插入新元素。

>>> numbers = [1, 5] 
>>> numbers[1:1] = [2, 3, 4] 
>>> numbers 
[1, 2, 3, 4, 5] 

在这里,我“替换”了一个空切片,相当于插入了一个序列。
你可采取相反的措施来删除切片。

>>> numbers 
[1, 2, 3, 4, 5] 
>>> numbers[1:4] = [] 
>>> numbers 
[1, 5]

你可能猜到了,上述代码与del numbers[1:4]等效。现在,你可自己尝试执行步长不为1(乃
至为负)的切片赋值了。

2.3.3 列表方法

方法是与对象(列表、数、字符串等)联系紧密的函数。通常,像下面这样调用方法:
object.method(arguments)
方法调用与函数调用很像,只是在方法名前加上了对象和句点(第7章将详细阐述方法到底
是什么)。列表包含多个可用来查看或修改其内容的方法。

  1. append
    方法append用于将一个对象附加到列表末尾。
>>> lst = [1, 2, 3] 
>>> lst.append(4) 
>>> lst 
[1, 2, 3, 4]

你可能心存疑虑,为何给列表取lst这样糟糕的名字,而不称之为list呢?我原本是可以这
样做的,但你可能还记得,list是一个内置函数①,如果我将前述列表命名为list,就无法调用
这个函数。在特定的应用程序中,通常可给列表选择更好的名称。诸如lst等名称确实不能提供
任何信息。因此,如果列表为价格列表,可能应该将其命名为prices、prices_of_eggs或
pricesOfEggs。

① 实际上,从Python 2.2起,list就是类型,而不是函数了(tuple和str亦如此)。

另外请注意,与其他几个类似的方法一样,append也就地修改列表。这意味着它不会返回修
改后的新列表,而是直接修改旧列表。这通常正是你想要的,但有时会带来麻烦。我将在本章后
面介绍sort时再回过头来讨论这一点。
2. clear
方法clear就地清空列表的内容。

>>> lst = [1, 2, 3] 
>>> lst.clear() 
>>> lst 
[]

这类似于切片赋值语句lst[:] = []。
3. copy
方法 copy 复制列表。前面说过,常规赋值只是将另一个名称关联到列表

深复制 浅复制

>>> a = [1, 2, 3] 
>>> b = a 
>>> b[1] = 4 
>>> a 
[1, 4, 3] 

让a和b指向不同的列表,就必须将b关联到a的副本。

>>> a = [1, 2, 3] 
>>> b = a.copy() 
>>> b[1] = 4 
>>> a 
[1, 2, 3] 

这类似于使用a[:]或list(a),它们也都复制a。

a.copy() a[:] list(a)

  1. count
    方法count计算指定的元素在列表中出现了多少次。
>>> ['to', 'be', 'or', 'not', 'to', 'be'].count('to') 
2 
>>> x = [[1, 2], 1, 1, [2, 1, [1, 2]]] 
>>> x.count(1) 
2 
>>> x.count([1, 2]) 
1 
  1. extend
    方法extend让你能够同时将多个值附加到列表末尾,为此可将这些值组成的序列作为参数提
    供给方法extend。换而言之,你可使用一个列表来扩展另一个列表。
>>> a = [1, 2, 3] 
>>> b = [4, 5, 6] 
>>> a.extend(b) 
>>> a 
[1, 2, 3, 4, 5, 6]

这可能看起来类似于拼接,但存在一个重要差别,那就是将修改被扩展的序列(这里是a)。
在常规拼接中,情况是返回一个全新的序列。

>>> a = [1, 2, 3] 
>>> b = [4, 5, 6] 
>>> a + b 
[1, 2, 3, 4, 5, 6] 
>>> a 
[1, 2, 3] 

如你所见,拼接出来的列表与前一个示例扩展得到的列表完全相同,但在这里a并没有被修
改。鉴于常规拼接必须使用a和b的副本创建一个新列表,因此如果你要获得类似于下面的效果,
拼接的效率将比extend低

>>> a = a + b 

另外,拼接操作并非就地执行的,即它不会修改原来的列表。
要获得与extend相同的效果,可将列表赋给切片,如下所示:

>>> a = [1, 2, 3] 
>>> b = [4, 5, 6] 
>>> a[len(a):] = b 
>>> a 
[1, 2, 3, 4, 5, 6] 

这虽然可行,但可读性不是很高。
6. index
方法index在列表中查找指定值第一次出现的索引

>>> knights = ['We', 'are', 'the', 'knights', 'who', 'say', 'ni'] 
>>> knights.index('who') 
4 
>>> knights.index('herring') 
Traceback (innermost last): 
 File "<pyshell>", line 1, in ? 
 knights.index('herring') 
ValueError: list.index(x): x not in list

搜索单词'who'时,发现它位于索引4处。

>>> knights[4] 
'who'

然而,搜索'herring'时引发了异常,因为根本就没有找到这个单词。
7. insert
方法insert用于将一个对象插入列表。

>>> numbers = [1, 2, 3, 5, 6, 7] 
>>> numbers.insert(3, 'four') 
>>> numbers 
[1, 2, 3, 'four', 5, 6, 7]

与extend一样,也可使用切片赋值来获得与insert一样的效果。

>>> numbers = [1, 2, 3, 5, 6, 7] 
>>> numbers[3:3] = ['four'] 
>>> numbers 
[1, 2, 3, 'four', 5, 6, 7]

这虽巧妙,但可读性根本无法与使用insert媲美。
8. pop
方法pop从列表中删除一个元素(末尾为最后一个元素),并返回这一元素。

>>> x = [1, 2, 3] 
>>> x.pop() 
3 
>>> x 
[1, 2] 
>>> x.pop(0) 
1 
>>> x 
[2]

pop是唯一既修改列表又返回一个非None值的列表方法。

push和pop是大家普遍接受的两种栈操作(加入和取走)的名称。
Python没有提供push,但可使用append来替代。
方法pop和append的效果相反,因此将刚弹出的值压入(或附加)后,得到的
栈将与原来相同。

>>> x = [1, 2, 3] 
>>> x.append(x.pop()) 
>>> x 
[1, 2, 3]

要创建先进先出(FIFO)的队列,可使用insert(0, ...)代替append。另外,也可继续使
用append,但用pop(0)替代pop()。一种更佳的解决方案是,使用模块collections中的
deque。有关这方面的详细信息,请参阅第10章。

  1. remove
    方法remove用于删除第一个为指定值的元素。
>>> x = ['to', 'be', 'or', 'not', 'to', 'be'] 
>>> x.remove('be') 
>>> x 
['to', 'or', 'not', 'to', 'be'] 
>>> x.remove('bee') 
Traceback (innermost last): 
 File "<pyshell>", line 1, in ? 
 x.remove('bee') 
ValueError: list.remove(x): x not in list

如你所见,这只删除了为指定值的第一个元素,无法删除列表中其他为指定值的元素(这里
是字符串'bee')。
请注意,remove是就地修改且不返回值的方法之一。不同于pop的是,它修改列表,但不返
回任何值。
10. reverse
方法reverse按相反的顺序排列列表中的元素

>>> x = [1, 2, 3] 
>>> x.reverse() 
>>> x 
[3, 2, 1]

注意到reverse修改列表,但不返回任何值(与remove和sort等方法一样)。

如果要按相反的顺序迭代序列,可使用函数reversed。这个函数不返回列表,而是返回
一个迭代器(迭代器将在第9章详细介绍)。你可使用list将返回的对象转换为列表。

>>> x = [1, 2, 3] 
>>> list(reversed(x)) 
[3, 2, 1] 
  1. sort
    方法sort用于对列表就地排序①。就地排序意味着对原来的列表进行修改,使其元素按顺序
    排列,而不是返回排序后的列表的副本。

① 多说一句,从Python 2.3起,方法sort使用的是稳定的排序算法。

>>> x = [4, 6, 2, 1, 7, 9] 
>>> x.sort() 
>>> x 
[1, 2, 4, 6, 7, 9]

前面介绍了多个修改列表而不返回任何值的方法,在大多数情况下,这种行为都相当自然(例
如,对append来说就如此)。需要强调sort的行为也是这样的,因为这种行为给很多人都带来了
困惑。在需要排序后的列表副本并保留原始列表不变时,通常会遭遇这种困惑。为实现这种目标,
一种直观(但错误)的方式是像下面这样做:

>>> x = [4, 6, 2, 1, 7, 9] 
>>> y = x.sort() # Don't do this! 
>>> print(y) 
None

鉴于sort修改x且不返回任何值,最终的结果是x是经过排序的,而y包含None。为实现前述
目标,正确的方式之一是先将y关联到x的副本,再对y进行排序,如下所示:

>>> x = [4, 6, 2, 1, 7, 9] 
>>> y = x.copy() 
>>> y.sort() 
>>> x 
[4, 6, 2, 1, 7, 9] 
>>> y 
[1, 2, 4, 6, 7, 9]

只是将x赋给y是不可行的,因为这样x和y将指向同一个列表。为获取排序后的列表的副本,
另一种方式是使用函数sorted。

>>> x = [4, 6, 2, 1, 7, 9] 
>>> y = sorted(x) 
>>> x 
[4, 6, 2, 1, 7, 9] 
>>> y 
[1, 2, 4, 6, 7, 9]

实际上,这个函数可用于任何序列,但总是返回一个列表②。

② 实际上,函数sorted可用于任何可迭代的对象。可迭代的对象将在第9章详细介绍。

>>> sorted('Python') 
['P', 'h', 'n', 'o', 't', 'y']

如果要将元素按相反的顺序排列,可先使用sort(或sorted),再调用方法reverse,也可使
用参数reverse,这将在下一小节介绍。

  1. 高级排序
    方法sort接受两个可选参数:key和reverse。这两个参数通常是按名称指定的,称为关键字
    参数,将在第6章详细讨论。参数key类似于参数cmp:你将其设置为一个用于排序的函数。然而,
    不会直接使用这个函数来判断一个元素是否比另一个元素小,而是使用它来为每个元素创建一个
    键,再根据这些键对元素进行排序。因此,要根据长度对元素进行排序,可将参数key设置为函数len。
>>> x = ['aardvark', 'abalone', 'acme', 'add', 'aerate'] 
>>> x.sort(key=len) 
>>> x 
['add', 'acme', 'aerate', 'abalone', 'aardvark']

对于另一个关键字参数reverse,只需将其指定为一个真值(True或False,将在第5章详细介
绍),以指出是否要按相反的顺序对列表进行排序。

>>> x = [4, 6, 2, 1, 7, 9] 
>>> x.sort(reverse=True) 
>>> x 
[9, 7, 6, 4, 2, 1]

函数sorted也接受参数key和reverse。在很多情况下,将参数key设置为一个自定义函数很有
用。第6章将介绍如何创建自定义函数。

2.4 元组:不可修改的序列

与列表一样,元组也是序列,唯一的差别在于元组是不能修改的(你可能注意到了,字符串
也不能修改)。元组语法很简单,只要将一些值用逗号分隔,就能自动创建一个元组。

>>> 1, 2, 3 
(1, 2, 3)

如你所见,元组还可用圆括号括起(这也是通常采用的做法)。

>>> (1, 2, 3) 
(1, 2, 3)

空元组用两个不包含任何内容的圆括号表示。

>>> () 
()

你可能会问,如何表示只包含一个值的元组呢?这有点特殊:
虽然只有一个值,也必须在它后面加上逗号。

>>> 42 
42 
>>> 42, 
(42,)
>>> (42,) 
(42,) 

最后两个示例创建的元组长度为1,而第一个示例根本没有创建元组。逗号至关重要,仅将
值用圆括号括起不管用:(42)与42完全等效。但仅仅加上一个逗号,就能完全改变表达式的值。

>>> 3 * (40 + 2) 
126 
>>> 3 * (40 + 2,) 
(42, 42, 42)

函数tuple的工作原理与list很像:它将一个序列作为参数,并将其转换为元组①。如果参数
已经是元组,就原封不动地返回它。

① 与list一样,tuple实际上也不是函数,而是类型

>>> tuple([1, 2, 3]) 
(1, 2, 3) 
>>> tuple('abc') 
('a', 'b', 'c') 
>>> tuple((1, 2, 3)) 
(1, 2, 3) 

你可能意识到了,元组并不太复杂,而且除创建和访问其元素外,可对元组执行的操作不多。
元组的创建及其元素的访问方式与其他序列相同。

>>> x = 1, 2, 3 
>>> x[1] 
2 
>>> x[0:2] 
(1, 2) 

元组的切片也是元组,就像列表的切片也是列表一样。为何要熟悉元组呢?原因有以下两个。
 它们用作映射中的键(以及集合的成员),而列表不行。映射将在第4章详细介绍。
 有些内置函数和方法返回元组,这意味着必须跟它们打交道。只要不尝试修改元组,与
元组“打交道”通常意味着像处理列表一样处理它们(需要使用元组没有的index和count
等方法时例外)。
一般而言,使用列表足以满足对序列的需求。

原文地址:https://www.cnblogs.com/CSE-kun/p/14882815.html