《数据结构与算法分析》学习笔记(二)——算法分析

一、对算法分析方法的最简单的理解和使用方法

1、首先大家可能一般会被那些数学的概念搞晕,其实简单理解下来,就是假设任何语句执行的效率都是一样的,所以设定每一个语句的执行时间都是一个时间单位,那么只要计算这个程序到底执行了多少语句,就可以算出其时间复杂度。

2、其次就是我们要明白,我们是个估算,所以可以进行化简,明显我们可以忽略那些相对来说低阶的项,只分洗最高阶项。然后主要就是有这些常见的法则:

(1)FOR循环

一次for循环的运行时间至多是该for循环内语句的运行时间乘以迭代次数。

(2)嵌套的FOR循环

肯定是计算最内层循环语句的执行次数,然后再乘以所以循环的迭代次数。

(3)整个程序

其实找到循环迭代次数最多,嵌套最多的进行计算就好。

3、当然,我们计算的只是大概值,而且为了计算的简便,我们一边进行适当的放大,即只考虑最坏最坏的情况,算出其时间复杂度即可。

二、最大子序列

书中通过4种不同的解法来进一步强化我们应该如何计算时间复杂度,小白我也好好学习了下,在此写下学习笔记。

题目:算出一个整数序列中最大的子序列的值。

算法一:

int MaxSubsequenceSum1(const int A[],int N)

{

int thisSum , MaxSum;

MaxSum=0;

for (int i =0; i<N; i++)

{

for (int j=i; j<N; j++)

{

thisSum=0;

for (int K =i; K<=j; K++)

{

thisSum+=A[K];

}

if(thisSum>MaxSum)

{

MaxSum=thisSum;

}

}

}

  

if(MaxSum==0)

{

int i;

for(i=0;i<N;i++)

{

if(A[i]!=0)

break;

}

if(i!=N)

{

int Max=A[0];

for(int j=0;j<N;j++)

{

if(A[j]>Max)

{

Max=A[j];

}

}

MaxSum=Max;

  

}

}

 

  

  

return MaxSum;

  

 

}


我们可以看出其最大的for循环有三重,而且最坏的可能迭代次数都是N,所以我们可以很容易的得出,此算法的时间复杂度为O(N^3),其中资源最明显的浪费就在重复计算了从低i到第k的子序列的值,所以算法二便是进行了简单的修改。
算法二:

int MaxSubsequenceSum2(const int A[],int N)

{

int thisSum,MaxSum;

MaxSum=0;

for (int i=0; i<N; i++)

{

thisSum=0;

for (int j=i; j<N; j++)

{

thisSum+=A[j];

if(thisSum>MaxSum)

{

MaxSum=thisSum;

}

}

}

  

  

if(MaxSum==0)

{

int i;

for(i=0;i<N;i++)

{

if(A[i]!=0)

break;

}

if(i!=N)

{

int Max=A[0];

for(int j=0;j<N;j++)

{

if(A[j]>Max)

{

Max=A[j];

}

}

MaxSum=Max;

  

}

}

  

  

return MaxSum;

 

 

}


其实改变的地方即使采用的累加的策略而已,但却使效率大大的提高了,所以这里也是提高算法效率的一个小小的技巧,即尽力减少不必要的计算,尽量利用现有的计算结果。
算法三:

int Max3(const int a,const int b,const int c)

{

int temp = (a>b)?a:b;

temp=(temp>c)?temp:c;

return temp;

}

 

 

 

int MaxSubSum(const int A[],int Left,int Right)

{

int MaxLeftSum,MaxRightSum;

int MaxLeftBorderSum,MaxRightBorderSum;

int LeftBorderSum,RightBorderSum;

  

if(Left==Right)

{

if(A[Left]>0)

return A[Left];

else

return 0;

}

  

int center=(Right+Left)/2;

  

MaxLeftSum=MaxSubSum(A, Left, center);

MaxRightSum=MaxSubSum(A, center+1, Right);

  

LeftBorderSum=MaxLeftBorderSum=0;

for(int i=center;i>=Left;i--)

{

LeftBorderSum+=A[i];

if(LeftBorderSum>MaxLeftBorderSum)

{

MaxLeftBorderSum=LeftBorderSum;

}

}

  

RightBorderSum=MaxRightBorderSum=0;

for(int i=center+1;i<=Right;i++)

{

RightBorderSum+=A[i];

if (RightBorderSum>MaxRightBorderSum)

{

MaxRightBorderSum=RightBorderSum;

}

}

  

return Max3(MaxLeftSum,MaxRightSum,MaxLeftBorderSum+MaxRightBorderSum);

  

}

 

int MaxSubsequenceSum3(const int A[],int N)

{

int MaxSum = MaxSubSum(A, 0, N-1);

  

if(MaxSum==0)

{

int i;

for(i=0;i<N;i++)

{

if(A[i]!=0)

break;

}

if(i!=N)

{

int Max=A[0];

for(int j=0;j<N;j++)

{

if(A[j]>Max)

{

Max=A[j];

}

}

MaxSum=Max;

  

}

}

 

return MaxSum;

 

}

这个算法使用了分治的思想,还有递归的思想,即把一个问题不断的分解成类似的规模更小的子问题来解决,所以这里我们要求一个序列的最大子序列,其实就是求左半部分,有伴部分和中间部分的最大子序列,而求左半部分,后半部分的最大子序列显然是将问题的规模变小了,所以可以递归使用,直到剩下一个数的情况.而中间部分呢,则取左右两边,左边从右往左,右边从左往右的最大子序列。然后加起来作为中间部分的值,最后比较中间部分,左半部分,后半部分三部分的值就可以得到结果啦。

 

 

算法四:

int MaxSubsequenceSum4(const int A[],int N)

{

int thisSum,MaxSum;

thisSum = MaxSum=0;

  

for(int i=0;i<N;i++)

{

thisSum+=A[i];

if(thisSum>MaxSum)

{

MaxSum=thisSum;

}

else if(thisSum<0)

{

thisSum=0;

}

}

  

  

if(MaxSum==0)

{

int i;

for(i=0;i<N;i++)

{

if(A[i]!=0)

break;

}

if(i!=N)

{

int Max=A[0];

for(int j=0;j<N;j++)

{

if(A[j]>Max)

{

Max=A[j];

}

}

MaxSum=Max;

  

}

}

  

return MaxSum;

 

}

 

 

最后一个算法就比较牛逼啦,这个算法竟然只是N阶的,大家可以想想这个算法的速度有多快,而且如果不考虑全是负数的情况的话,还可以做到随时读入,随时释放内存的强大功能,在此深深膜拜一下。

 








原文地址:https://www.cnblogs.com/BlueMountain-HaggenDazs/p/3898352.html