TensorFlow学习笔记

TensorFlow学习笔记


基础构架

搭建模型

Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1]))

y = Weights*x_data + biases

计算误差

接着就是计算 yy_data 的误差:

loss = tf.reduce_mean(tf.square(y-y_data))

传播误差

反向传递误差的工作就教给optimizer了, 我们使用的误差传递方法是梯度下降法: Gradient Descent 让后我们使用 optimizer 来进行参数的更新.

optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

训练

到目前为止, 我们只是建立了神经网络的结构, 还没有使用这个结构. 在使用这个结构之前, 我们必须先初始化所有之前定义的Variable, 所以这一步是很重要的!

# init = tf.initialize_all_variables() # tf 马上就要废弃这种写法
init = tf.global_variables_initializer()  # 替换成这样就好

接着,我们再创建会话 Session. 我们会在下一节中详细讲解 Session. 我们用 Session 来执行 init 初始化步骤. 并且, 用 Sessionrun 每一次 training 的数据. 逐步提升神经网络的预测准确性.

sess = tf.Session()
sess.run(init)          # Very important

for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(Weights), sess.run(biases))

Session 会话控制

Session 是 Tensorflow 为了控制,和输出文件的执行的语句. 运行 session.run() 可以获得你要得知的运算结果, 或者是你所要运算的部分.

首先,加载 Tensorflow ,然后建立两个 matrix ,输出两个 matrix 矩阵相乘的结果。

import tensorflow as tf

# create two matrixes

matrix1 = tf.constant([[3,3]])
matrix2 = tf.constant([[2],
                       [2]])
product = tf.matmul(matrix1,matrix2)

因为 product 不是直接计算的步骤, 所以我们会要使用 Session 来激活 product 并得到计算结果. 有两种形式使用会话控制 Session

# method 1
sess = tf.Session()
result = sess.run(product)
print(result)
sess.close()
# [[12]]

# method 2
with tf.Session() as sess:
    result2 = sess.run(product)
    print(result2)
# [[12]]

Variable 变量

在 Tensorflow 中,定义了某字符串是变量,它才是变量,这一点是与 Python 所不同的。

定义语法: state = tf.Variable()

import tensorflow as tf

state = tf.Variable(0, name='counter')

# 定义常量 one
one = tf.constant(1)

# 定义加法步骤 (注: 此步并没有直接计算)
new_value = tf.add(state, one)

# 将 State 更新成 new_value
update = tf.assign(state, new_value)

如果你在 Tensorflow 中设定了变量,那么初始化变量是最重要的!!所以定义了变量以后, 一定要定义 init = tf.initialize_all_variables() .

到这里变量还是没有被激活,需要再在 sess 里, sess.run(init) , 激活 init 这一步.

# 如果定义 Variable, 就一定要 initialize
# init = tf.initialize_all_variables() # tf 马上就要废弃这种写法
init = tf.global_variables_initializer()  # 替换成这样就好
 
# 使用 Session
with tf.Session() as sess:
    sess.run(init)
    for _ in range(3):
        sess.run(update)
        print(sess.run(state))

注意:直接 print(state) 不起作用!!

一定要把 sess 的指针指向 state 再进行 print 才能得到想要的结果!

Placeholder 传入值

placeholder 是 Tensorflow 中的占位符,暂时储存变量.

Tensorflow 如果想要从外部传入data, 那就需要用到 tf.placeholder(), 然后以这种形式传输数据 sess.run(***, feed_dict={input: **}).

示例:

import tensorflow as tf

#在 Tensorflow 中需要定义 placeholder 的 type ,一般为 float32 形式
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)

# mul = multiply 是将input1和input2 做乘法运算,并输出为 output 
ouput = tf.multiply(input1, input2)

接下来, 传值的工作交给了 sess.run() , 需要传入的值放在了feed_dict={} 并一一对应每一个 input. placeholderfeed_dict={} 是绑定在一起出现的。

with tf.Session() as sess:
    print(sess.run(ouput, feed_dict={input1: [7.], input2: [2.]}))
# [ 14.]

建造神经网络

添加层 def add_layer()

在 Tensorflow 里定义一个添加层的函数可以很容易的添加神经层,为之后的添加省下不少时间.

神经层里常见的参数通常有weightsbiases和激励函数。

首先,我们需要导入tensorflow模块。

import tensorflow as tf

然后定义添加神经层的函数def add_layer(),它有四个参数:输入值、输入的大小、输出的大小和激励函数,我们设定默认的激励函数是None

def add_layer(inputs, in_size, out_size, activation_function=None):    

接下来,我们开始定义weightsbiases

因为在生成初始参数时,随机变量(normal distribution)会比全部为0要好很多,所以我们这里的weights为一个in_size行, out_size列的随机变量矩阵。

Weights = tf.Variable(tf.random_normal([in_size, out_size]))

在机器学习中,biases的推荐值不为0,所以我们这里是在0向量的基础上又加了0.1

biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)

下面,我们定义Wx_plus_b, 即神经网络未激活的值。其中,tf.matmul()是矩阵的乘法。

Wx_plus_b = tf.matmul(inputs, Weights) + biases

activation_function——激励函数为None时,输出就是当前的预测值——Wx_plus_b,不为None时,就把Wx_plus_b传到activation_function()函数中得到输出。

if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)

最后,返回输出,添加一个神经层的函数——def add_layer()就定义好了。

return outputs

建造神经网络

首先,我们导入本次所需的模块。

import tensorflow as tf
import numpy as np

构造添加一个神经层的函数。(在上次课程中有详细介绍)

def add_layer(inputs, in_size, out_size, activation_function=None):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

导入数据

构建所需的数据。 这里的x_datay_data并不是严格的一元二次函数的关系,因为我们多加了一个noise,这样看起来会更像真实情况。

x_data = np.linspace(-1,1,300, dtype=np.float32)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32)
y_data = np.square(x_data) - 0.5 + noise

利用占位符定义我们所需的神经网络的输入。 tf.placeholder()就是代表占位符,这里的None代表无论输入有多少都可以,因为输入只有一个特征,所以这里是1

xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])

接下来,我们就可以开始定义神经层了。 通常神经层都包括输入层、隐藏层和输出层。这里的输入层只有一个属性, 所以我们就只有一个输入;隐藏层我们可以自己假设,这里我们假设隐藏层有10个神经元; 输出层和输入层的结构是一样的,所以我们的输出层也是只有一层。 所以,我们构建的是——输入层1个、隐藏层10个、输出层1个的神经网络。

搭建网络

下面,我们开始定义隐藏层,利用之前的add_layer()函数,这里使用 Tensorflow 自带的激励函数tf.nn.relu

l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)

接着,定义输出层。此时的输入就是隐藏层的输出——l1,输入有10层(隐藏层的输出层),输出有1层。

prediction = add_layer(l1, 10, 1, activation_function=None)

计算预测值prediction和真实值的误差,对二者差的平方求和再取平均。

loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                     reduction_indices=[1]))

接下来,是很关键的一步,如何让机器学习提升它的准确率。tf.train.GradientDescentOptimizer()中的值通常都小于1,这里取的是0.1,代表以0.1的效率来最小化误差loss

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

使用变量时,都要对它进行初始化,这是必不可少的。

# init = tf.initialize_all_variables() # tf 马上就要废弃这种写法
init = tf.global_variables_initializer()  # 替换成这样就好

定义Session,并用 Session 来执行 init 初始化步骤。 (注意:在tensorflow中,只有session.run()才会执行我们定义的运算。)

sess = tf.Session()
sess.run(init)

训练

下面,让机器开始学习。

比如这里,我们让机器学习1000次。机器学习的内容是train_step, 用 Sessionrun 每一次 training 的数据,逐步提升神经网络的预测准确性。 (注意:当运算要用到placeholder时,就需要feed_dict这个字典来指定输入。)

for i in range(1000):
    # training
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})

每50步我们输出一下机器学习的误差。

    if i % 50 == 0:
        # to see the step improvement
        print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))

结果可视化

matplotlib 可视化

构建图形,用散点图描述真实数据之间的关系。 (注意:plt.ion()用于连续显示。)

# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()#本次运行请注释,全局运行不要注释
plt.show()

接下来,我们来显示预测数据。

每隔50次训练刷新一次图形,用红色、宽度为5的线来显示我们的预测数据和输入之间的关系,并暂停0.1s。

for i in range(1000):
    # training
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
        # to visualize the result and improvement
        try:
            ax.lines.remove(lines[0])
        except Exception:
            pass
        prediction_value = sess.run(prediction, feed_dict={xs: x_data})
        # plot the prediction
        lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
        plt.pause(0.1)

原文地址:https://www.cnblogs.com/Archger/p/12774666.html