word2vector(含code)

Word2Vec其实就是通过学习文本来用词向量的方式表征词的语义信息,即通过一个嵌入空间使得语义上相似的单词在该空间内距离很近。

Embedding其实就是一个映射,将单词从原先所属的空间映射到新的多维空间中,也就是把原先词所在空间嵌入到一个新的空间中去。

Word2Vec模型实际上分为了两个部分,第一部分为建立模型,第二部分是通过模型获取嵌入词向量。Word2Vec的整个建模过程实际上与自编码器(auto-encoder)的思想很相似,即先基于训练数据构建一个神经网络,当这个模型训练好以后,我们并不会用这个训练好的模型处理新的任务,我们真正需要的是这个模型通过训练数据所学得的参数,例如隐层的权重矩阵——后面我们将会看到这些权重在Word2Vec中实际上就是我们试图去学习的“word vectors”。基于训练数据建模的过程,我们给它一个名字叫“Fake Task”,意味着建模并不是我们最终的目的。

上面提到的这种方法实际上会在无监督特征学习(unsupervised feature learning)中见到,最常见的就是自编码器(auto-encoder):通过在隐层将输入进行编码压缩,继而在输出层将数据解码恢复初始状态,训练完成后,我们会将输出层“砍掉”,仅保留隐层。

https://www.leiphone.com/news/201706/QprrvzsrZCl4S2lw.html

基于Python版本的实现:
import math
import sys
import numpy as np

class Ngram:
def init(self, tokens):
self.tokens = tokens
self.count = 0
self.score = 0.0

def set_score(self, score):
    self.score = score

def get_string(self):
    return '_'.join(self.tokens)

class Corpus: #语料库
def init(self, filename, word_phrase_passes, word_phrase_delta, word_phrase_threshold, word_phrase_filename):
i = 0
file_pointer = open(filename, 'r')

    all_tokens = []

    for line in file_pointer:
        line_tokens = line.split()
        for token in line_tokens:
            token = token.lower() #大写转小写

            if len(token) > 1 and token.isalnum():  # isalnum() 方法检测字符串是否由字母和数字组成
                all_tokens.append(token)

            i += 1
            if i % 10000 == 0:
                sys.stdout.flush() #刷新输出
                sys.stdout.write("
Reading corpus: %d" % i)

    sys.stdout.flush()
    print( "
Corpus read: %d" % i)

    file_pointer.close()

    self.tokens = all_tokens

    for x in range(1, word_phrase_passes + 1):
        self.build_ngrams(x, word_phrase_delta, word_phrase_threshold, word_phrase_filename)

    self.save_to_file(filename)

def build_ngrams(self, x, word_phrase_delta, word_phrase_threshold, word_phrase_filename):

    ngrams = []
    ngram_map = {}

    token_count_map = {}
    for token in self.tokens:
        if token not in token_count_map:
            token_count_map[token] = 1
        else:
            token_count_map[token] += 1

    i = 0
    ngram_l = []
    for token in self.tokens:

        if len(ngram_l) == 2:
            ngram_l.pop(0)

        ngram_l.append(token)
        ngram_t = tuple(ngram_l)

        if ngram_t not in ngram_map:
            ngram_map[ngram_t] = len(ngrams)
            ngrams.append(Ngram(ngram_t))

        ngrams[ngram_map[ngram_t]].count += 1

        i += 1
        if i % 10000 == 0:
            sys.stdout.flush()
            sys.stdout.write("
Building n-grams (%d pass): %d" % (x, i))

    sys.stdout.flush()
    print( "
n-grams (%d pass) built: %d" % (x, i))

    filtered_ngrams_map = {}
    file_pointer = open(word_phrase_filename + ('-%d' % x), 'w')

    # http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
    i = 0
    for ngram in ngrams:
        product = 1
        for word_string in ngram.tokens:
            product *= token_count_map[word_string]
        ngram.set_score((float(ngram.count) - word_phrase_delta) / float(product))

        if ngram.score > word_phrase_threshold:
            filtered_ngrams_map[ngram.get_string()] = ngram
            file_pointer.write('%s %d
' % (ngram.get_string(), ngram.count))

        i += 1
        if i % 10000 == 0:
            sys.stdout.flush()
            sys.stdout.write("
Scoring n-grams: %d" % i)

    sys.stdout.flush()
    print( "
Scored n-grams: %d, filtered n-grams: %d" % (i, len(filtered_ngrams_map)))
    file_pointer.close()

    # Combining the tokens
    all_tokens = []
    i = 0

    while i < len(self.tokens):

        if i + 1 < len(self.tokens):
            ngram_l = []
            ngram_l.append(self.tokens[i])
            ngram_l.append(self.tokens[i+1])
            ngram_string = '_'.join(ngram_l)

            if len(ngram_l) == 2 and (ngram_string in filtered_ngrams_map):
                ngram = filtered_ngrams_map[ngram_string]
                all_tokens.append(ngram.get_string())
                i += 2
            else:
                all_tokens.append(self.tokens[i])
                i += 1
        else:
            all_tokens.append(self.tokens[i])
            i += 1

    print("Tokens combined")

    self.tokens = all_tokens

def save_to_file(self, filename):

    i = 1

    filepointer = open('preprocessed-' + filename, 'w')
    line = ''
    for token in self.tokens:
        if i % 20 == 0:
            line += token
            filepointer.write('%s
' % line)
            line = ''
        else:
            line += token + ' '
        i += 1

        if i % 10000 == 0:
            sys.stdout.flush()
            sys.stdout.write("
Writing to preprocessed input file")

    sys.stdout.flush()
    print ("
Preprocessed input file written")

    filepointer.close()


def __getitem__(self, i):
    return self.tokens[i]

def __len__(self):
    return len(self.tokens)

def __iter__(self):
    return iter(self.tokens)

class Word:
def init(self, word):
self.word = word
self.count = 0

class Vocabulary:
def init(self, corpus, min_count):
self.words = []
self.word_map = {}
self.build_words(corpus, min_count)

    self.filter_for_rare_and_common()

def build_words(self, corpus, min_count):
    words = []
    word_map = {}

    i = 0
    for token in corpus:
        if token not in word_map:
            word_map[token] = len(words)
            words.append(Word(token))
        words[word_map[token]].count += 1

        i += 1
        if i % 10000 == 0:
            sys.stdout.flush()
            sys.stdout.write("
Building vocabulary: %d" % len(words))

    sys.stdout.flush()
    print("
Vocabulary built: %d" % len(words))

    self.words = words
    self.word_map = word_map # Mapping from each token to its index in vocab

def __getitem__(self, i):
    return self.words[i]

def __len__(self):
    return len(self.words)

def __iter__(self):
    return iter(self.words)

def __contains__(self, key):
    return key in self.word_map

def indices(self, tokens):
    return [self.word_map[token] if token in self else self.word_map['{rare}'] for token in tokens]

def filter_for_rare_and_common(self):
    # Remove rare words and sort
    tmp = []
    tmp.append(Word('{rare}'))
    unk_hash = 0

    count_unk = 0
    for token in self.words:
        if token.count < min_count:
            count_unk += 1
            tmp[unk_hash].count += token.count
        else:
            tmp.append(token)

    tmp.sort(key=lambda token : token.count, reverse=True)

    # Update word_map
    word_map = {}
    for i, token in enumerate(tmp):
        word_map[token.word] = i

    self.words = tmp
    self.word_map = word_map
    pass

class TableForNegativeSamples:
def init(self, vocab):
power = 0.75
norm = sum([math.pow(t.count, power) for t in vocab]) # Normalizing constants

    table_size = int(1e6)
    table = np.zeros(table_size, dtype=np.uint32)

    p = 0 # Cumulative probability
    i = 0
    for j, word in enumerate(vocab):
        p += float(math.pow(word.count, power))/norm
        while i < table_size and float(i) / table_size < p:
            table[i] = j
            i += 1
    self.table = table

def sample(self, count):
    indices = np.random.randint(low=0, high=len(self.table), size=count)
    return [self.table[i] for i in indices]

def sigmoid(z):
if z > 6:
return 1.0
elif z < -6:
return 0.0
else:
return 1 / (1 + math.exp(-z))

def save(vocab, nn0, filename):
file_pointer = open(filename, 'w')
for token, vector in zip(vocab, nn0):
word = token.word.replace(' ', '_')
vector_str = ' '.join([str(s) for s in vector])
file_pointer.write('%s %s ' % (word, vector_str))
file_pointer.close()

if name == 'main':

for input_filename in ['in.txt']:
#for input_filename in ['news-2012-phrases-10000.txt']:

    # Number of negative examples
    k_negative_sampling = 5

    # Min count for words to be used in the model, else {rare}
    min_count = 3

    # Number of word phrase passes
    word_phrase_passes = 3 # 3

    # min count for word phrase formula
    word_phrase_delta = 3 # 5

    # Threshold for word phrase creation
    word_phrase_threshold = 1e-4

    # Read the corpus 读取语料库
    corpus = Corpus(input_filename, word_phrase_passes, word_phrase_delta, word_phrase_threshold, 'phrases-%s' % input_filename)

    # Read train file to init vocab读取训练文件初始化vocab
    vocab = Vocabulary(corpus, min_count)
    table = TableForNegativeSamples(vocab)

    # Max window length
    for window in [5]: # 5 for large set

        # Dimensionality of word embeddings
        for dim in [100]: # 100

            print( "Training: %s-%d-%d-%d" % (input_filename, window, dim, word_phrase_passes))

            # Initialize network
            nn0 = np.random.uniform(low=-0.5/dim, high=0.5/dim, size=(len(vocab), dim))
            nn1 = np.zeros(shape=(len(vocab), dim))

            # Initial learning rate
            initial_alpha = 0.01 # 0.01

            # Modified in loop
            global_word_count = 0
            alpha = initial_alpha
            word_count = 0
            last_word_count = 0

            tokens = vocab.indices(corpus)

            for token_idx, token in enumerate(tokens):
                if word_count % 10000 == 0:
                    global_word_count += (word_count - last_word_count)
                    last_word_count = word_count

                    # Recalculate alpha
                    # alpha = initial_alpha * (1 - float(global_word_count) / len(corpus))
                    # if alpha < initial_alpha * 0.0001:
                    #     alpha = initial_alpha * 0.0001

                    sys.stdout.flush()
                    sys.stdout.write("
Training: %d of %d" % (global_word_count, len(corpus)))

                # Randomize window size, where win is the max window size
                current_window = np.random.randint(low=1, high=window+1)
                context_start = max(token_idx - current_window, 0)
                context_end = min(token_idx + current_window + 1, len(tokens))
                context = tokens[context_start:token_idx] + tokens[token_idx+1:context_end] # Turn into an iterator?

                for context_word in context:
                    # Init neu1e with zeros
                    neu1e = np.zeros(dim)
                    classifiers = [(token, 1)] + [(target, 0) for target in table.sample(k_negative_sampling)]
                    for target, label in classifiers:
                        z = np.dot(nn0[context_word], nn1[target])
                        p = sigmoid(z)
                        g = alpha * (label - p)
                        neu1e += g * nn1[target]              # Error to backpropagate to nn0
                        nn1[target] += g * nn0[context_word]  # Update nn1

                    # Update nn0
                    nn0[context_word] += neu1e

                word_count += 1

            global_word_count += (word_count - last_word_count)
            sys.stdout.flush()
            print("
Training finished: %d" % global_word_count)

            # Save model to file
            save(vocab, nn0, 'output-%s-%d-%d-%d' % (input_filename, window, dim, word_phrase_passes))

基于tensorflow版本的实现

import time
import numpy as np
import tensorflow as tf
import random
from collections import Counter

主要包括以下四个部分的代码:

数据预处理:替换文本中特殊符号并去除低频词;对文本分词;构建语料;单词映射表

训练样本构建

模型构建

模型验证

首先加载数据

with open('text8') as f:
text = f.read()

定义函数来完成数据的预处理

def preprocess(text, freq=5):
'''
对文本进行预处理

参数
---
text: 文本数据
freq: 词频阈值
'''
# 对文本中的符号进行替换
text = text.lower()
text = text.replace('.', ' <PERIOD> ')
text = text.replace(',', ' <COMMA> ')
text = text.replace('"', ' <QUOTATION_MARK> ')
text = text.replace(';', ' <SEMICOLON> ')
text = text.replace('!', ' <EXCLAMATION_MARK> ')
text = text.replace('?', ' <QUESTION_MARK> ')
text = text.replace('(', ' <LEFT_PAREN> ')
text = text.replace(')', ' <RIGHT_PAREN> ')
text = text.replace('--', ' <HYPHENS> ')
text = text.replace('?', ' <QUESTION_MARK> ')
# text = text.replace('
', ' <NEW_LINE> ')
text = text.replace(':', ' <COLON> ')
words = text.split()

# 删除低频词,减少噪音影响
word_counts = Counter(words)
trimmed_words = [word for word in words if word_counts[word] > freq]

return trimmed_words

清洗文本并分词

words = preprocess(text)
print(words[:20])

构建映射表

vocab = set(words)
vocab_to_int = {w: c for c, w in enumerate(vocab)}
int_to_vocab = {c: w for c, w in enumerate(vocab)}

enumerate()是用来遍历一个可迭代容器中的元素,同时通过一个计数器变量记录当前元素所对应的索引值。

print("total words: {}".format(len(words)))
print("unique words: {}".format(len(set(words))))

整个文本中单词大约为1660万规模,词典大小为6万左右

训练样本构建

skip-gram中,训练样本的形式是(input word, output word),其中output word是input word的上下文。

为了减少模型噪音并加速训练速度,我们在构造batch之前要对样本进行采样,剔除停用词等噪音因素。

采样:对样本进行抽样,剔除高频的停用词来减少模型的噪音,并加速训练。

对原文本进行vocab到int的转换

int_words = [vocab_to_int[w] for w in words]

t = 1e-5 # t值
threshold = 0.8 # 剔除概率阈值

统计单词出现频次

int_word_counts = Counter(int_words)
total_count = len(int_words)

计算单词频率

word_freqs = {w: c/total_count for w, c in int_word_counts.items()}

计算被删除的概率

prob_drop = {w: 1 - np.sqrt(t / word_freqs[w]) for w in int_word_counts}

对单词进行采样

train_words = [w for w in int_words if prob_drop[w] < threshold]

print(len(train_words))

构建batch

Skip-Gram模型是通过输入词来预测上下文。

对于一个给定词,离它越近的词可能与它越相关,离它越远的词越不相关,这里我们设置窗口大小为5,对于每个训练单词,我们还会在[1:5]之间随机生成一个整数R,

用R作为我们最终选择output word的窗口大小。这里之所以多加了一步随机数的窗口重新选择步骤,是为了能够让模型更聚焦于当前input word的邻近词。

def get_targets(words, idx, window_size=5):
'''
获得input word的上下文单词列表

参数
---
words: 单词列表
idx: input word的索引号
window_size: 窗口大小
'''
target_window = np.random.randint(1, window_size + 1)
# 这里要考虑input word前面单词不够的情况
start_point = idx - target_window if (idx - target_window) > 0 else 0
end_point = idx + target_window
# output words(即窗口中的上下文单词)
targets = set(words[start_point: idx] + words[idx + 1: end_point + 1])
return list(targets)

def get_batches(words, batch_size, window_size=5):
'''
构造一个获取batch的生成器
'''
n_batches = len(words) // batch_size

# 仅取full batches
words = words[:n_batches * batch_size]

for idx in range(0, len(words), batch_size):
    x, y = [], []
    batch = words[idx: idx + batch_size]
    for i in range(len(batch)):
        batch_x = batch[i]
        batch_y = get_targets(batch, i, window_size)
        # 由于一个input word会对应多个output word,因此需要长度统一
        x.extend([batch_x] * len(batch_y))
        y.extend(batch_y)
    yield x, y

构建网络

该部分包括:输入层,嵌入,负采样

train_graph = tf.Graph()
with train_graph.as_default():
inputs = tf.placeholder(tf.int32, shape=[None], name='inputs')
labels = tf.placeholder(tf.int32, shape=[None, None], name='labels')

# 嵌入
# 嵌入矩阵的矩阵形状为  vocab_size*hidden_units_size
vocab_size = len(int_to_vocab)
embedding_size = 200  # 嵌入维度

with train_graph.as_default():
# 嵌入层权重矩阵
embedding = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1, 1))#tf.random_uniform 从均匀分布中输出随机值
# 实现lookup
embed = tf.nn.embedding_lookup(embedding, inputs)
#tf.nn.embedding_lookup函数的用法主要是:选取一个张量里面索引对应的元素。
# tf.nn.embedding_lookup(tensor, id):tensor就是输入张量,id就是张量对应的索引,

负采样:负采样主要是为了解决梯度下降计算速度慢的问题

# ensorFlow中的tf.nn.sampled_softmax_loss会在softmax层上进行采样计算损失,计算出的loss要比full softmax loss低。
n_sampled = 100

with train_graph.as_default():
softmax_w = tf.Variable(tf.truncated_normal([vocab_size, embedding_size], stddev=0.1))
softmax_b = tf.Variable(tf.zeros(vocab_size))

# 计算negative sampling下的损失
loss = tf.nn.sampled_softmax_loss(softmax_w, softmax_b, labels, embed, n_sampled, vocab_size)

cost = tf.reduce_mean(loss)
optimizer = tf.train.AdamOptimizer().minimize(cost)

模型验证

with train_graph.as_default():
# 随机挑选一些单词
valid_size = 16
valid_window = 100
# 从不同位置各选8个单词
valid_examples = np.array(random.sample(range(valid_window), valid_size // 2))
valid_examples = np.append(valid_examples,
random.sample(range(1000, 1000 + valid_window), valid_size // 2))

valid_size = len(valid_examples)
# 验证单词集
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

# 计算每个词向量的模并进行单位化
norm = tf.sqrt(tf.reduce_sum(tf.square(embedding), 1, keep_dims=True))
normalized_embedding = embedding / norm
# 查找验证单词的词向量
valid_embedding = tf.nn.embedding_lookup(normalized_embedding, valid_dataset)
# 计算余弦相似度
similarity = tf.matmul(valid_embedding, tf.transpose(normalized_embedding))

epochs = 10  # 迭代轮数
batch_size = 1000  # batch大小
window_size = 10  # 窗口大小

with train_graph.as_default():
saver = tf.train.Saver() # 文件存储

with tf.Session(graph=train_graph) as sess:
iteration = 1
loss = 0
sess.run(tf.global_variables_initializer())

for e in range(1, epochs + 1):
    batches = get_batches(train_words, batch_size, window_size)
    start = time.time()
    #
    for x, y in batches:
        feed = {inputs: x,
                labels: np.array(y)[:, None]}
        train_loss, _ = sess.run([cost, optimizer], feed_dict=feed)

        loss += train_loss

        if iteration % 100 == 0:
            end = time.time()
            print("Epoch {}/{}".format(e, epochs),
                  "Iteration: {}".format(iteration),
                  "Avg. Training loss: {:.4f}".format(loss / 100),
                  "{:.4f} sec/batch".format((end - start) / 100))
            loss = 0
            start = time.time()

        # 计算相似的词
        if iteration % 1000 == 0:
            # 计算similarity
            sim = similarity.eval()
            for i in range(valid_size):
                valid_word = int_to_vocab[valid_examples[i]]
                top_k = 8  # 取最相似单词的前8个
                nearest = (-sim[i, :]).argsort()[1:top_k + 1]
                log = 'Nearest to [%s]:' % valid_word
                for k in range(top_k):
                    close_word = int_to_vocab[nearest[k]]
                    log = '%s %s,' % (log, close_word)
                print(log)

        iteration += 1

save_path = saver.save(sess, "checkpoints/text8.ckpt")
embed_mat = sess.run(normalized_embedding)

%matplotlib inline

%config InlineBackend.figure_format = 'retina'

import matplotlib.pyplot as plt
from sklearn.manifold import TSNE

viz_words = 500
tsne = TSNE()
embed_tsne = tsne.fit_transform(embed_mat[:viz_words, :])

fig, ax = plt.subplots(figsize=(14, 14))
for idx in range(viz_words):
plt.scatter(*embed_tsne[idx, :], color='steelblue')
plt.annotate(int_to_vocab[idx], (embed_tsne[idx, 0], embed_tsne[idx, 1]), alpha=0.7)

原文地址:https://www.cnblogs.com/Ann21/p/11313830.html