题解 P3704 【[SDOI2017]数字表格】

原题地址

一句话题意

(egin{aligned}prod_{i=1}^nprod_{j=1}^mf_{gcd(i,j)}end{aligned}),多组询问

解题思路

考虑更换枚举(gcd)的方式,由于是连乘(prod)处理起来可能有点抽象,不像(sum)一样非常好理解

(egin{aligned}prod_{i=1}^nprod_{j=1}^mf_{gcd(i,j)}end{aligned})

(egin{aligned}=prod_{p=1}^nf_p^{sum_{i=1}^nsum_{j=1}^m[gcd(i,j)=p]}end{aligned}),这里就是在更换方式枚举(gcd),对于每一个(n),由于是(prod),对于之前的(n)也要再次进行计算

(egin{aligned}=prod_{p=1}^nf_p^{sum_{i=1}^frac npsum_{j=1}^frac mp[gcd(i,j)=1]}end{aligned}),反演老套路,对幂上的柿子进行反演

(egin{aligned}=prod_{p=1}^nf_p^{sum_{i=1}^{frac np}sum_{j=1}^{frac mp}sum_{d|i,d|j}mu(d)}end{aligned})

(egin{aligned}=prod_{p=1}^nf_p^{sum_{d=1}^nmu(d)lfloorfrac n{pd} floorlfloorfrac m{pd} floor}end{aligned})

然后推到到这里按照反演老套路该(dp)(Q)然后整除分块直接直播切题了,但是怎么化(Q)???????歪?

(egin{aligned}prod_{Q=1}^nprod_{d|Q}end{aligned})按照老套路,一定会有这个东西,在思考如何去处理(f)以及(mu)我们更换枚举之后对于枚举(d)的时候不会对(Q)产生影响,把分块的指数提出来,然后改一下下标就可以了

(egin{aligned}=prod_{Q=1}^nleft(prod_{d|Q}f_{d/Q}^{mu(d)} ight)^{lfloorfrac n{Q} floorlfloorfrac m{Q} floor}end{aligned})

对于里面那一堆东西(egin{aligned}prod_{d|Q}f_{d/Q}^{mu(d)}end{aligned})我们直接预处理然后分块计算就行了,复杂度为(O(n+Tlog nsqrt n))

#include<bits/stdc++.h>
    
#define LL long long
    
#define _ 0

#define int long long

using namespace std;
    
/*Grievous Lady*/
    
template <typename T> void read(T & t){
    t = 0;int f = 1;char ch = getchar();
    while(ch < '0' || ch > '9'){if(ch == '-')f =- 1;ch = getchar();}
    do{t = t * 10 + ch - '0';ch = getchar();}while(ch >= '0' && ch <= '9');t *= f;
}
    
#define mod 1000000007

const int kato = 1e7 + 10;

const int luna = 1e6;

inline LL quick_pow(LL a , LL b){
    LL res = 1;
    for(; b ; b >>= 1 , a = a * a % mod){
        if(b & 1){
            res = res * a % mod;
        }
    }
    return res % mod;
}

int prime[kato] , cnt , f[kato] , invf[kato] , yuni[kato] , mu[kato];

bool ispri[kato];

inline void get_yuni(){
    for(int i = 2;i <= luna;i ++){
        if(!ispri[i]){
            prime[++ cnt] = i;
            mu[i] = -1;
        }
        for(int j = 1;j <= cnt && i * prime[j] <= luna;j ++){
            ispri[i * prime[j]] = 1;
            if(i % prime[j] == 0){
                break;
            }
            mu[i * prime[j]] = -mu[i];
        }
    }
    for(int i = 2;i <= luna;i ++){
        f[i] = (f[i - 1] + f[i - 2]) % mod;
        invf[i] = quick_pow(f[i] , mod - 2);
        yuni[i] = 1;
    }
    for(int d = 1;d <= luna;d ++){
        if(mu[d] == 1){
            for(int Q = d , cnt = 1;Q <= luna;Q += d , cnt ++){
                yuni[Q] = yuni[Q] * f[cnt] % mod;
            }
        }
        if(mu[d] == -1){
            for(int Q = d , cnt = 1;Q <= luna;Q += d , cnt ++){
                yuni[Q] = yuni[Q] * invf[cnt] % mod;
            }
        }
    }
    for(int i = 1;i <= luna;i ++){
        yuni[i] = yuni[i] * yuni[i - 1] % mod;
    }
}

LL n , m , t;

inline int Ame_(){
    read(t);
    mu[1] = f[1] = invf[1] = yuni[1] = yuni[0] = 1;
    get_yuni();
    // for(int i = 1;i <= 10;i ++){
    //     cerr << mu[i] << ' '; 
    // }
    for(; t --> 0 ;){
        LL ans = 1;
        read(n) , read(m);
        if(n > m) swap(n , m);
        for(LL l = 1 , r;l <= n;l = r + 1){
            r = min(n / (n / l) , m / (m / l));
            ans = ans * quick_pow(yuni[r] * quick_pow(yuni[l - 1] , mod - 2) % mod , (n / l) * (m / l)) % mod;
        }
        printf("%lld
" , ans);
    }
    // fclose(stdin);
    // fclose(stdout);
    return ~~(0^_^0);
}
    
int Ame__ = Ame_();
    
signed main(){;}
原文地址:https://www.cnblogs.com/Ame-sora/p/13468954.html