「UOJ 514」通用测评号(生成函数)

首先,题目中的过程可以看作:每次选择任意一个燃料仓,给它装填 (1) 单位的燃料,如果此时恰好 “填满” 了它,就给答案 (+1)

考虑 (n) 号燃料仓填满的概率,因为所有燃料仓是等价的,由期望线性性,答案就是这个概率乘 (n)

填满 (n) 号燃料仓前,我们必定给它装填了 (1) 单位。考虑这之前的状态:前 (n - 1) 个燃料仓中至少有一个装填了少于 (b) 单位,第 (n) 个燃料仓恰好装填了 (a - 1) 单位。所以说,(n) 号仓被填满概率就是:

[frac{1}{n} sum_{min{x_1, x_2, cdots, x_{n - 1}} < b, x_n = a - 1} left(frac{1}{n} ight)^{sum_{i = 1}^{n} x_i} inom{sum_{i = 1}^{n} x_i}{x_1, x_2, cdots, x_n} ]

可以把 ([min{x_1, x_2, cdots, x_{n - 1}} < b]) 转化成 (1 - [x_1, x_2, cdots, x_{n - 1} ge b])。考虑写成 EGF 的形式:

[hat{f}(x) = frac{1}{n} left(left(e^{frac{1}{n}x} ight)^{n - 1} - left(e^{frac{1}{n}x} - sum_{i = 0}^{b - 1} frac{left(frac{1}{n} ight)^ix^i}{i!} ight)^{n - 1} ight)frac{left(frac{1}{n} ight)^{a - 1} x^{a - 1}}{(a - 1)!} ]

我们要求的即是 (sum_{i ge 0} hat{f}_i cdot i!)

考虑换元,令 (u = e^{frac{1}{n}x}, v = (frac{x}{n})),那么有:

[hat{f}(x) = frac{1}{n}left(u^{n - 1} - left(u - sum_{i = 0}^{b - 1} frac{v^i}{i!} ight)^{n - 1} ight)frac{v^{a - 1}}{(a - 1)!} ]

先假设 (hat{f}(x) = sum f_{p, q} u^p v^q),我们对每一项分别考虑:

[egin{split} & u^pv^q \ = & e^{frac{p}{n}x} left(frac{1}{n} ight)^q x^q \ = & left(frac{1}{n} ight)^q sum_{i ge 0} frac{left(frac{p}{n} ight)^ix^{i + q}}{i!} end{split} ]

这一项对答案的贡献是:

[egin{split} & f_{p, q}sum_{i ge 0}i![x^i]u^pv^q \ = & f_{p, q} left(frac{1}{n} ight)^q sum_{i ge 0} frac{left(frac{p}{n} ight)^i(i + q)!}{i!} \ = & f_{p, q} left(frac{1}{n} ight)^q q! sum_{i ge 0} left(frac{p}{n} ight)^i inom{i + q}{i} \ = & f_{p, q} left(frac{1}{n} ight)^q q! frac{1}{left(1 - frac{p}{n} ight)^{q + 1}} \ end{split} ]

所以,我们已经可以快速求 (f_{p, q} u^p v^q) 对答案的贡献了,现在考虑如何求 (f_{p, q})

(sum_{i = 0}^{b - 1} frac{v^i}{i!} = P)(P) 是关于 (v)(b - 1) 次多项式。二项式定理展开,我们有:

[egin{split} hat{f}(x) & = frac{1}{n}left(u^{n - 1} - left(u - sum_{i = 0}^{b - 1} frac{v^i}{i!} ight)^{n - 1} ight)frac{v^{a - 1}}{(a - 1)!} \ & = frac{1}{n(a - 1)!}left(u^{n - 1} - sum_{i = 0}^{n - 1} inom{n - 1}{i} left(-1 ight)^{i}u^{n - 1 - i} P^i ight)v^{a - 1} \ & = frac{1}{n(a - 1)!}left(sum_{i = 1}^{n - 1} inom{n - 1}{i} left(-1 ight)^{i - 1}u^{n - 1 - i} P^i ight)v^{a - 1} \ end{split} ]

我们只要算出 (P^1, P^2, cdots, P^{n - 1}) 的各项系数即可。

暴力算是 (O(n^2b^2)) 的,可以用 FFT 优化到 (O(n^2b log nb)),下面讲一个 (O(n^2b)) 的方法。

发现 (P' = P - frac{v^{b - 1}}{(b - 1)!}),考虑微分方程:

[egin{split} (P^k)' & = kP' P^{k - 1} \ & = k(P - frac{v^{b - 1}}{(b - 1)!})P^{k - 1}\ & = k(P^k - Q)\ end{split} ]

其中 (Q)(P^{k - 1}) 乘上一个单项式。我们按照 (k) 从小到大的顺序递推,假设我们已经求出了当前的 (Q)。设 (P^k = sum_{i = 0}^{m} p_iv^i, Q = sum_{i = 0}^{m} q_iv^i),那么:

[sum_{i = 0}^{m - 1} (i + 1)p_{i + 1}v^i = kleft(sum_{i = 0}^{m} p_iv^i - sum_{i = 0}^{m} q_iv^i ight) \ p_{i + 1} = frac{k(p_i - q_i)}{i + 1} ]

我们还有 (p_0 = 1),所以就可以直接递推了。总共的时间复杂度为 (O(n^2b))

#include <bits/stdc++.h>
#define rep(i, a, b) for (int i = (a); i <= int(b); i++)
#define per(i, a, b) for (int i = (a); i >= int(b); i--)
using namespace std;

const int maxn = 250, maxm = maxn * maxn, mod = 998244353;
int n, a, b, fact[maxm + 3], finv[maxm + 3], inv[maxm + 3], m, p[maxm + 3], q[maxm + 3];

int qpow(int a, int b) {
	int c = 1;
	for (; b; b >>= 1, a = 1ll * a * a % mod) if (b & 1) c = 1ll * a * c % mod;
	return c;
}

void prework(int n) {
	fact[0] = 1;
	rep(i, 1, n) fact[i] = 1ll * fact[i - 1] * i % mod;
	finv[n] = qpow(fact[n], mod - 2);
	per(i, n, 1) finv[i - 1] = 1ll * finv[i] * i % mod;
	rep(i, 1, n) inv[i] = 1ll * fact[i - 1] * finv[i] % mod;
}

int C(int n, int m) {
	return 1ll * fact[n] * finv[m] % mod * finv[n - m] % mod;
}

int main() {
	scanf("%d %d %d", &n, &a, &b);
	prework(max(a, n * b));
	p[0] = 1;
	int res = 0;
	rep(k, 1, n - 1) {
		rep(i, 0, m) q[i + b - 1] = 1ll * p[i] * finv[b - 1] % mod;
		m += b - 1;
		rep(i, 0, m - 1) p[i + 1] = 1ll * inv[i + 1] * k % mod * (p[i] - q[i] + mod) % mod;
		int num = qpow((1 - 1ll * (n - 1 - k) * inv[n] % mod + mod) % mod, mod - 2);
		int cur = 1ll * (k & 1 ? 1 : mod - 1) * C(n - 1, k) % mod * qpow(1ll * inv[n] * num % mod, a - 1) % mod * fact[a - 1] % mod;
		rep(i, 0, m) {
			cur = 1ll * cur * (i == 0 ? 1 : inv[n]) % mod * (i == 0 ? 1 : i + a - 1) % mod * num % mod;
			res = (res + 1ll * p[i] * cur) % mod;
		}
	}
	res = 1ll * res * finv[a - 1] % mod;
	printf("%d
", res);
	return 0;
}
原文地址:https://www.cnblogs.com/Alfalfa-w/p/12732622.html