二项式反演

(f(n)=sum_{i=0}^ninom{n}{i}g(i)),则 (g(n)=sum_{i=0}^n(-1)^{n-i}inom{n}{i}f(i))

证明:

[g(n)=sum_{i=0}^n(-1)^{n-i}inom{n}{i}f(i)\ =sum_{i=0}^n(-1)^{n-i}inom{n}{i}sum_{j=0}^iinom{i}{j}g(j)\ =sum_{i=0}^n(-1)^{n-i}sum_{j=0}^iinom{n}{i}inom{i}{j}g(j)\ ]

由三项式版恒等式

[inom{r}{m}inom{m}{k}=inom{r}{k}inom{r-k}{m-k} (m,kin Z) ]

[g(n)=sum_{i=0}^n(-1)^{n-i}sum_{j=0}^iinom{n}{i}inom{i}{j}g(j)\ =sum_{i=0}^n(-1)^{n-i}sum_{j=0}^iinom{n}{j}inom{n-j}{i-j}g(j)\ =sum_{i=0}^nsum_{j=0}^i(-1)^{n-i}inom{n}{j}inom{n-j}{i-j}g(j)\ =sum_{j=0}^ng(j)inom{n}{j}sum_{i=j}^n(-1)^{n-i}inom{n-j}{i-j}\ =sum_{j=0}^ng(j)inom{n}{j}sum_{i=0}^{n-j}(-1)^{n-j-i}inom{n-j}{i}\ ]

而又有

[sum_{i=0}^n(-1)^{i}inom{n}{i}=[n=0] ]

所以

[g(n)=sum_{j=0}^ng(j)inom{n}{j}sum_{i=0}^{n-j}(-1)^{n-j-i}inom{n-j}{i}\ =g(n)inom{n}{n}\ =g(n) ]

证毕。

原文地址:https://www.cnblogs.com/AEMShana/p/13488018.html