Pytorch-卷积神经网络CNN之lenet5的Pytorch代码实现

先说一个小知识,助于理解代码中各个层之间维度是怎么变换的。

卷积函数:一般只用来改变输入数据的维度,例如3维到16维。

Conv2d()

Conv2d(in_channels:int,out_channels:int,kernel_size:Union[int,tuple],stride=1,padding=o):   
"""   
:param in_channels: 输入的维度    
:param out_channels: 通过卷积核之后,要输出的维度    
:param kernel_size: 卷积核大小    
:param stride: 移动步长    
:param padding: 四周添多少个零  
"""

一个小例子:

import torch
import torch.nn
# 定义一个16张照片,每个照片3个通道,大小是28*28
x= torch.randn(16,3,32,32)
# 改变照片的维度,从3维升到16维,卷积核大小是5
conv= torch.nn.Conv2d(3,16,kernel_size=5,stride=1,padding=0)
res=conv(x)

print(res.shape)
# torch.Size([16, 16, 28, 28])
# 维度升到16维,因为卷积核大小是5,步长是1,所以照片的大小缩小了,变成28

卷积神经网络实战之Lenet5:

下面放一个示例图,代码中的过程就是根据示例图进行的

  • 1.经过一个卷积层,从刚开始的[b,3,32,32]-->[b,6,28,28]
  • 2.经过一个池化层,从[b,6,28,28]-->[b,6,14,14]
  • 3.再经过一个卷积层,从[b,6,14,14]-->[b,16,10,10]
  • 4.再经过一个池化层,从[b,16,10,10]-->[b,16,5,5]
  • 5.经过三个个全连接层,将数据[b,16,5,5]-->[b,120]-->[b,84]-->[b,10]

Lenet5的构造如下:

Lenet5(
  (conv_unit): Sequential(
    (0): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (fc_unit): Sequential(
    (0): Linear(in_features=400, out_features=120, bias=True)
    (1): ReLU()
    (2): Linear(in_features=120, out_features=84, bias=True)
    (3): ReLU()
    (4): Linear(in_features=84, out_features=10, bias=True)
  )
)

程序运行前,先启动visdom,如果没有配置好visdom环境的,先百度安装好visdom环境

  • 1.使用快捷键win+r,在输入框输出cmd,然后在命令行窗口里输入python -m visdom.server,启动visdom

代码实战

定义一个名为lenet5.py的文件,代码如下

import torch
from torch import nn
import torch.optim
import torch.nn
from torch.nn import functional as F


class Lenet5(nn.Module):
    # for cifar10 dataset.
    def __init__(self):
        super(Lenet5, self).__init__()

        # 卷积层 Convolutional
        self.conv_unit = nn.Sequential(
            # x:[b,3,32,32]==>[b,6,28,28]
            nn.Conv2d(3, 6, kernel_size=5, stride=1, padding=0),
            # x:[b,6,28,28]==>[b,6,14,14]
            nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
            #[b,6,14,14]==>[b,16,10,10]
            nn.Conv2d(6,16,kernel_size=5,stride=1,padding=0),
            # x:[b,16,10,10]==>[b,16,5,5]
            nn.MaxPool2d(kernel_size=2,stride=2,padding=0),

        )

        # 全连接层fully connected
        self.fc_unit=nn.Sequential(
            nn.Linear(16*5*5,120),
            nn.ReLU(),
            nn.Linear(120,84),
            nn.ReLU(),
            nn.Linear(84,10)
        )

    def forward(self,x):
        """
        :param x:[b,3,32,32]
        :return:
        """
        batchsz=x.size(0)
        # 卷积层池化层运算 [b,3,32,32]==>[b,16,5,5]
        x=self.conv_unit(x)

        # 对数据进行打平,方便后边全连接层进行运算[b,16,5,5]==>[b,16*5*5]
        x=x.view(batchsz,16*5*5)

        # 全连接层[b,16*5*5]==>[b,10]
        logits=self.fc_unit(x)

        return logits
        # loss=self.criteon(logits,y)


def main():
    net=Lenet5()
    # [b,3,32,32]
    temp = torch.randn(2, 3, 32, 32)
    out = net(temp)
    # [b,16,5,5]
    print("lenet_out:", out.shape)

if __name__ == '__main__':
    main()

定义一个名为main.py的文件,代码如下

import torch
from torchvision import datasets
from torchvision import transforms
from torch.utils.data import DataLoader
from torch import nn,optim
from visdom import Visdom
from lenet5 import  Lenet5

def main():
    batch_siz=32
    cifar_train = datasets.CIFAR10('cifar',True,transform=transforms.Compose([
        transforms.Resize((32,32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]),download=True)
    cifar_train=DataLoader(cifar_train,batch_size=batch_siz,shuffle=True)

    cifar_test = datasets.CIFAR10('cifar',False,transform=transforms.Compose([
        transforms.Resize((32,32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]),download=True)
    cifar_test=DataLoader(cifar_test,batch_size=batch_siz,shuffle=True)

    x,label = iter(cifar_train).next()
    print('x:',x.shape,'label:',label.shape)

    # 指定运行到cpu //GPU
    device=torch.device('cpu')
    model = Lenet5().to(device)

    # 调用损失函数use Cross Entropy loss交叉熵
    # 分类问题使用CrossEntropyLoss比MSELoss更合适
    criteon = nn.CrossEntropyLoss().to(device)
    # 定义一个优化器
    optimizer=optim.Adam(model.parameters(),lr=1e-3)
    print(model)

    viz=Visdom()
    viz.line([0.],[0.],win="loss",opts=dict(title='Lenet5 Loss'))
    viz.line([0.],[0.],win="acc",opts=dict(title='Lenet5 Acc'))

    # 训练train
    for epoch in range(1000):
        # 变成train模式
        model.train()
        # barchidx:下标,x:[b,3,32,32],label:[b]
        for barchidx,(x,label) in enumerate(cifar_train):
            # 将x,label放在gpu上
            x,label=x.to(device),label.to(device)
            # logits:[b,10]
            # label:[b]
            logits = model(x)
            loss = criteon(logits,label)

            # viz.line([loss.item()],[barchidx],win='loss',update='append')
            # backprop
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        viz.line([loss.item()],[epoch],win='loss',update='append')
        print(epoch,'loss:',loss.item())


        # 变成测试模式
        model.eval()
        with torch.no_grad():
            #  测试test
            # 正确的数目
            total_correct=0
            total_num=0
            for x,label in cifar_test:
                # 将x,label放在gpu上
                x,label=x.to(device),label.to(device)
                # [b,10]
                logits=model(x)
                # [b]
                pred=logits.argmax(dim=1)
                # [b] = [b'] 统计相等个数
                total_correct+=pred.eq(label).float().sum().item()
                total_num+=x.size(0)
            acc=total_correct/total_num
            print(epoch,'acc:',acc)

            viz.line([acc],[epoch],win='acc',update='append')
            # viz.images(x.view(-1, 3, 32, 32), win='x')


if __name__ == '__main__':
    main()

测试结果

准确率刚开始是有一定的上升的,最高可达64%,后来准确率就慢慢的下降。

原文地址:https://www.cnblogs.com/52dxer/p/13828640.html