Function【莫比乌斯反演+数论方块】-2020百度之星初赛1

题意:

分析:

题目要求的是:

[sum_{i=1}^{n}{sum_{t|i}{t[gcd(t,frac{i}{t})==1]}} ]

推导

[egin{align} S(n) &= sum_{i=1}^{n}{sum_{t|i}{t[gcd(t,frac{i}{t})==1]}}\ & = sum_{i=1}^{n}{sum_{t|i}{tsum_{d|(t,frac{i}{t})}{mu(d)}}}\ & = sum_{d=1}^{n}{mu(d)sum_{t=1}^{lfloor n/d floor}{tdsum_{i=1}^{lfloor n/dt^2 floor}{1}}} end{align} ]

(T=d^2t)

[egin{align} S(n) &= sum_{T=1}^{n}{left(sum_{i=1}^{lfloor n/T floor}{1} ight)sum_{d^2|T}{mu(d)lfloor frac{T}{d} floor}}\ & = sum_{T=1}^{n}{lfloor frac{n}{T} floor sum_{d^2|T}{mu(d)lfloor frac{T}{d} floor}}\ & = sum_{d=1}^{sqrt{n}}{mu(d)dsum_{T=1}^{lfloor n/d^2 floor}{lfloor frac{n/d^2}{T} floor T}} end{align} ]

(G(k)=sum_{i=1}^{k}{lfloor frac{k}{i} floor i})

[egin{align} S(n) &= sum_{d=1}^{sqrt{n}}{mu(d)d}G(lfloor frac{n}{d^2} floor) end{align} ]

实现时,(G(k)) 和 最终公式的计算均可以借助分块,复杂度:(O(sqrt{n}logn))

代码:

实现说明:

1.在预处理 (1e6) 以内的 (G(k)) 时,采用了枚举因子的处理方式,很巧妙,大于 (1e6) 时采用直接分块的方式;
2.不能直接对 (S(n)) 进行分块,故使用代码中的方式确定区间的右端点;

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int mod=1e9+7;
const int N=1e6+6;
int mu[N];
int prime[N],cnt;
bool vis[N];
ll g[N],sum[N],inv2=500000004;
ll getsum(ll x)
{
    ll res=0;
    x%=mod;
    res=(1+x)*x%mod*inv2%mod;
    return res;
}
void init()
{
    int maxn=1e6;
    mu[1]=1;
    cnt=0;
    memset(vis,false,sizeof(vis));
    for(int i=2;i<=maxn;i++)
    {
        if(!vis[i])
        {
            prime[++cnt]=i;
            mu[i]=-1;
        }
        for(int j=1;j<=cnt&&prime[j]*i<=maxn;j++)
        {
            vis[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            else
                mu[i*prime[j]]=-mu[i];
        }
    }
    for(int d=1;d<=maxn;d++)//1e6以内G(k)
    {
        for(int i=d;i<=maxn;i+=d)
            g[i]=(g[i]+d)%mod;
    }
    sum[0]=0;
    for(int i=1;i<=maxn;i++)
    {
        sum[i]=(sum[i-1]+1LL*mu[i]*i+mod)%mod;//i*mu[i]的前缀和
        g[i]=(g[i]+g[i-1])%mod;//G(k)
    }
}
ll solve(ll k)
{
    if(k<=1e6) return g[k];
    ll res=0;
    for(ll l=1,r;l<=k;l=r+1)
    {
        r=min(k,k/(k/l));
        res=(res+(k/l)*(getsum(1LL*r)-getsum(1LL*(l-1)))%mod+mod)%mod;
    }
    return res;
}
int main()
{
    int test;
    init();
    scanf("%d",&test);
    while(test--)
    {
        ll n,ans=0;
        scanf("%lld",&n);
        ll m=floor(sqrt(1.0*n));
        for(ll l=1,r;l<=m;l=r+1)//好像不能直接用分块写
        {
            ll t=1LL*l*l;
            ll x=n/t;
            r=l;
            while(n/(1LL*r*r)==x) r++;
            r--;
            ans=(ans+(sum[r]-sum[l-1])*solve(x)%mod+mod)%mod;
        }
        printf("%lld
",ans);
    }
    return 0;
}

参考博客:https://blog.csdn.net/weixin_44282912/article/details/107454309

原文地址:https://www.cnblogs.com/1024-xzx/p/13452023.html