整除分块(数论分块)

一个有趣的问题:

(sum_{i=1}^N lfloor frac Ni floor)(N leq 10^{12})

显然不能直接做废话

经过一番冷静推理暴力打表 ,我们发现以下性质:

$ 1. large lfloor frac Ni floor$最多只有(2sqrt{N})种取值

证明:对于(ile sqrt{N},) 只有 (sqrt{N}) 种,对于 (i>sqrt{N},large{frac Ni}<sqrt{N}),也只有 (sqrt{N}) 种取值,共计 (2 sqrt{N})(;;Box)

(2.) 设 $large lfloor frac N{i'} floor $ 与 (large lfloor frac Ni floor) 相等,则 (i') 的最大值为 $large left lfloor frac N{left lfloor frac Ni ight floor } ight floor $

证明:

(large{ lfloor frac Ni floor}=k) ,于是可以写成 (ki+p=N,1le p<i) 的形式,若 (large{lfloor frac N{i+d} floor}=k) ,于是有 (k(i+d)+p'=N) ,可以得到 (p'=p-kd) ,则 (d) 能取的最大值为 (large lfloor frac pk floor) ,于是 :

[egin{aligned}i'&=i+d_{max} \ &=i+lfloor frac pk floor \&=i+left lfloor frac {N ;mod; i}{lfloor frac Ni floor} ight floor \ &=i+left lfloor frac {N-lfloor frac Ni floor i}{lfloor frac Ni floor} ight floor \ &=left lfloor i + frac {N-lfloor frac Ni floor i}{lfloor frac Ni floor} ight floor \ &=left lfloor frac{lfloor frac Ni floor i}{lfloor frac Ni floor} + frac {N-lfloor frac Ni floor i}{lfloor frac Ni floor} ight floor \ &=left lfloor frac N{lfloor frac Ni floor} ight floor quad quadBoxend{aligned} ]

然后,设两个指针 (L)(R)(L) 的初始值为 (1) ,每次令 (large R=left lfloor frac N{lfloor frac NL floor} ight floor) ,将 (large (R-L+1)cdot lfloor frac NL floor) 累加至答案中 ,再令 (L=R+1)

由于 (large lfloor frac NL floor) 只有 (2sqrt N) 种取值 ,且单调递减,则最多只有 (2sqrt N) 个取值不同的段,时间复杂度为 (O(sqrt N))

原文地址:https://www.cnblogs.com/0xfffe/p/9648943.html