Redis源代码分析(三)---dict哈希结构

          昨天分析完adlist的Redis代码。今天立即马不停蹄的继续学习Redis代码中的哈希部分的结构学习,只是在这里他不叫什么hashMap,而是叫dict。并且是一种全新设计的一种哈希结构,他仅仅是通过几个简单的结构体。再搭配上一些比較常见的哈希算法,就实现了类似高级语言中HashMap的作用了。也让我见识了一些哈希算法的实现。比方dbj hash的算法实现。俗称times33,算法,就是不停的*33,。这样的算是一种超级简单的哈希算法。

         以下说说给我感觉Redis代码中哈希实现的不是那么简单。中间加了一些东西。比方说dictType定义了一些字典集合操作的公共方法。我把dict叫做字典总类,也能够说字典操作类,真正存放键值对的叫dictEntry。我叫做字典集合,字典集合存放在哈希表中,叫dictht,以下给出一张结构图来理理思路。


        以下给出2个文件的代码解析:

dict.h:

<span style="font-size:14px;">/* Hash Tables Implementation.
 *
 * This file implements in-memory hash tables with insert/del/replace/find/
 * get-random-element operations. Hash tables will auto-resize if needed
 * tables of power of two in size are used, collisions are handled by
 * chaining. See the source code for more information... :)
 *
 * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of Redis nor the names of its contributors may be used
 *     to endorse or promote products derived from this software without
 *     specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdint.h>

#ifndef __DICT_H
#define __DICT_H

/* 定义了成功与错误的值 */
#define DICT_OK 0
#define DICT_ERR 1

/* Unused arguments generate annoying warnings... */
/* dict没实用到时,用来提示警告的 */
#define DICT_NOTUSED(V) ((void) V)

/* 字典结构体,保存K-V值的结构体 */
typedef struct dictEntry {
	//字典key函数指针
    void *key;
    union {
        void *val;
        //无符号整型值
        uint64_t u64;
        //有符号整型值
        int64_t s64;
        double d;
    } v;
    //下一字典结点
    struct dictEntry *next;
} dictEntry;

/* 字典类型 */
typedef struct dictType {
	//哈希计算方法。返回整形变量
    unsigned int (*hashFunction)(const void *key);
    //复制key方法
    void *(*keyDup)(void *privdata, const void *key);
    //复制val方法
    void *(*valDup)(void *privdata, const void *obj);
    //key值比較方法
    int (*keyCompare)(void *privdata, const void *key1, const void *key2);
    //key的析构函数
    void (*keyDestructor)(void *privdata, void *key);
    //val的析构函数
    void (*valDestructor)(void *privdata, void *obj);
} dictType;

/* This is our hash table structure. Every dictionary has two of this as we
 * implement incremental rehashing, for the old to the new table. */
/* 哈希表结构体 */
typedef struct dictht {
	//字典实体
    dictEntry **table;
    //表格可容纳字典数量
    unsigned long size;
    unsigned long sizemask;
    //正在被使用的数量
    unsigned long used;
} dictht;

/* 字典主操作类 */
typedef struct dict {
	//字典类型
    dictType *type;
    //私有数据指针
    void *privdata;
    //字典哈希表,共2张。一张旧的,一张新的
    dictht ht[2];
    //重定位哈希时的下标
    long rehashidx; /* rehashing not in progress if rehashidx == -1 */
    //当前迭代器数量
    int iterators; /* number of iterators currently running */
} dict;

/* If safe is set to 1 this is a safe iterator, that means, you can call
 * dictAdd, dictFind, and other functions against the dictionary even while
 * iterating. Otherwise it is a non safe iterator, and only dictNext()
 * should be called while iterating. */
/* 字典迭代器,假设是安全迭代器,这safe设置为1。能够调用dicAdd,dictFind */
/* 假设是不安全的,则仅仅能调用dicNext方法*/
typedef struct dictIterator {
	//当前字典
    dict *d;
    //下标
    long index;
    //表格。和安全值的表格代表的是旧的表格,还是新的表格
    int table, safe;
    //字典实体
    dictEntry *entry, *nextEntry;
    /* unsafe iterator fingerprint for misuse detection. */
    /* 指纹标记,避免不安全的迭代器滥用现象 */
    long long fingerprint;
} dictIterator;

/* 字典扫描方法 */
typedef void (dictScanFunction)(void *privdata, const dictEntry *de);

/* This is the initial size of every hash table */
/* 初始化哈希表的数目 */
#define DICT_HT_INITIAL_SIZE     4

/* ------------------------------- Macros ------------------------------------*/
/* 字典释放val函数时候调用,假设dict中的dictType定义了这个函数指针, */
#define dictFreeVal(d, entry) 
    if ((d)->type->valDestructor) 
        (d)->type->valDestructor((d)->privdata, (entry)->v.val)
    
/* 字典val函数复制时候调用,假设dict中的dictType定义了这个函数指针。 */
#define dictSetVal(d, entry, _val_) do { 
    if ((d)->type->valDup) 
        entry->v.val = (d)->type->valDup((d)->privdata, _val_); 
    else 
        entry->v.val = (_val_); 
} while(0)

/* 设置dictEntry中共用体v中有符号类型的值 */
#define dictSetSignedIntegerVal(entry, _val_) 
    do { entry->v.s64 = _val_; } while(0)

/* 设置dictEntry中共用体v中无符号类型的值 */
#define dictSetUnsignedIntegerVal(entry, _val_) 
    do { entry->v.u64 = _val_; } while(0)

/* 设置dictEntry中共用体v中double类型的值 */
#define dictSetDoubleVal(entry, _val_) 
    do { entry->v.d = _val_; } while(0)

/* 调用dictType定义的key析构函数 */
#define dictFreeKey(d, entry) 
    if ((d)->type->keyDestructor) 
        (d)->type->keyDestructor((d)->privdata, (entry)->key)

/* 调用dictType定义的key复制函数,未定义直接赋值 */
#define dictSetKey(d, entry, _key_) do { 
    if ((d)->type->keyDup) 
        entry->key = (d)->type->keyDup((d)->privdata, _key_); 
    else 
        entry->key = (_key_); 
} while(0)

/* 调用dictType定义的key比較函数,未定义直接key值直接比較 */
#define dictCompareKeys(d, key1, key2) 
    (((d)->type->keyCompare) ? 
        (d)->type->keyCompare((d)->privdata, key1, key2) : 
        (key1) == (key2))

#define dictHashKey(d, key) (d)->type->hashFunction(key)   //哈希定位方法
#define dictGetKey(he) ((he)->key)    //获取dictEntry的key值
#define dictGetVal(he) ((he)->v.val)  //获取dicEntry中共用体v中定义的val值
#define dictGetSignedIntegerVal(he) ((he)->v.s64) //获取dicEntry中共用体v中定义的有符号值
#define dictGetUnsignedIntegerVal(he) ((he)->v.u64)  //获取dicEntry中共用体v中定义的无符号值
#define dictGetDoubleVal(he) ((he)->v.d)  //获取dicEntry中共用体v中定义的double类型值
#define dictSlots(d) ((d)->ht[0].size+(d)->ht[1].size)  //获取dict字典中总的表大小
#define dictSize(d) ((d)->ht[0].used+(d)->ht[1].used)   //获取dict字典中总的表的总正在被使用的数量
#define dictIsRehashing(d) ((d)->rehashidx != -1)   //字典有无被重定位过

/* API */
dict *dictCreate(dictType *type, void *privDataPtr);   //创建dict字典总类
int dictExpand(dict *d, unsigned long size);    //字典扩增方法
int dictAdd(dict *d, void *key, void *val);    //字典依据key, val加入一个字典集
dictEntry *dictAddRaw(dict *d, void *key);     //字典加入一个仅仅有key值的dicEntry
int dictReplace(dict *d, void *key, void *val); //替代dict中一个字典集
dictEntry *dictReplaceRaw(dict *d, void *key);  //替代dict中的一个字典。仅仅提供一个key值
int dictDelete(dict *d, const void *key);    //依据key删除一个字典集
int dictDeleteNoFree(dict *d, const void *key);  //字典集删除无、不调用free方法
void dictRelease(dict *d);   //释放整个dict
dictEntry * dictFind(dict *d, const void *key);  //依据key寻找字典集
void *dictFetchValue(dict *d, const void *key);  //依据key值寻找对应的val值
int dictResize(dict *d);  //又一次计算大小
dictIterator *dictGetIterator(dict *d); //获取字典迭代器
dictIterator *dictGetSafeIterator(dict *d);  //获取字典安全迭代器  
dictEntry *dictNext(dictIterator *iter);   //依据字典迭代器获取字典集的下一字典集
void dictReleaseIterator(dictIterator *iter); //释放迭代器
dictEntry *dictGetRandomKey(dict *d);  //随机获取一个字典集
void dictPrintStats(dict *d);  //打印当前字典状态
unsigned int dictGenHashFunction(const void *key, int len); //输入的key值。目标长度,此方法帮你计算出索引值
unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len); //这里提供了一种比較简单的哈希算法
void dictEmpty(dict *d, void(callback)(void*)); //清空字典
void dictEnableResize(void);  //启用调整方法
void dictDisableResize(void); //禁用调整方法
int dictRehash(dict *d, int n); //hash重定位。主要从旧的表映射到新表中,分n轮定位
int dictRehashMilliseconds(dict *d, int ms);  //在给定时间内,循环运行哈希重定位
void dictSetHashFunctionSeed(unsigned int initval); //设置哈希方法种子
unsigned int dictGetHashFunctionSeed(void);  //获取哈希种子
unsigned long dictScan(dict *d, unsigned long v, dictScanFunction *fn, void *privdata); //字典扫描方法

/* Hash table types */
/* 哈希表类型  */
extern dictType dictTypeHeapStringCopyKey;
extern dictType dictTypeHeapStrings;
extern dictType dictTypeHeapStringCopyKeyValue;

#endif /* __DICT_H */
</span>

dict.c;

<span style="font-size:14px;">/* Hash Tables Implementation.
 *
 * This file implements in memory hash tables with insert/del/replace/find/
 * get-random-element operations. Hash tables will auto resize if needed
 * tables of power of two in size are used, collisions are handled by
 * chaining. See the source code for more information... :)
 *
 * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of Redis nor the names of its contributors may be used
 *     to endorse or promote products derived from this software without
 *     specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "fmacros.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <limits.h>
#include <sys/time.h>
#include <ctype.h>

#include "dict.h"
#include "zmalloc.h"
#include "redisassert.h"

/* Using dictEnableResize() / dictDisableResize() we make possible to
 * enable/disable resizing of the hash table as needed. This is very important
 * for Redis, as we use copy-on-write and don't want to move too much memory
 * around when there is a child performing saving operations.
 *
 * Note that even when dict_can_resize is set to 0, not all resizes are
 * prevented: a hash table is still allowed to grow if the ratio between
 * the number of elements and the buckets > dict_force_resize_ratio. */
/* redis用了dictEnableResize() / dictDisableResize()方法能够又一次调整哈希表的长度,
 *由于redis採用的是写时复制的算法,不会挪动太多的内存,仅仅有当调整数量大于一定比例才可能有效 */
static int dict_can_resize = 1;
static unsigned int dict_force_resize_ratio = 5;

/* -------------------------- private prototypes ---------------------------- */
/* 私有方法 */
static int _dictExpandIfNeeded(dict *ht);    //字典是否须要扩展
static unsigned long _dictNextPower(unsigned long size);
static int _dictKeyIndex(dict *ht, const void *key);
static int _dictInit(dict *ht, dictType *type, void *privDataPtr);  //字典初始化方法

/* -------------------------- hash functions -------------------------------- */
/* 哈希索引计算的方法 */

/* Thomas Wang's 32 bit Mix Function */
/* Thomas Wang's 32 bit Mix 的哈希算法直接输入key值,获取索引值,据说这样的冲突的概率非常低 */
unsigned int dictIntHashFunction(unsigned int key)
{
    key += ~(key << 15);
    key ^=  (key >> 10);
    key +=  (key << 3);
    key ^=  (key >> 6);
    key += ~(key << 11);
    key ^=  (key >> 16);
    return key;
}

//哈希方法种子,跟产生随机数的种子作用应该是一样的
static uint32_t dict_hash_function_seed = 5381;

/* 重设哈希种子 */
void dictSetHashFunctionSeed(uint32_t seed) {
    dict_hash_function_seed = seed;
}

/* 获取哈希种子 */
uint32_t dictGetHashFunctionSeed(void) {
    return dict_hash_function_seed;
}

/* MurmurHash2, by Austin Appleby
 * Note - This code makes a few assumptions about how your machine behaves -
 * 1. We can read a 4-byte value from any address without crashing
 * 2. sizeof(int) == 4
 *
 * And it has a few limitations -
 *
 * 1. It will not work incrementally.
 * 2. It will not produce the same results on little-endian and big-endian
 *    machines.
 */
/* 输入的key值。目标长度,此方法帮你计算出索引值。此方法特别表明。
 *	不会由于机器之间高低位存储的不同而产生同样的结果 */
unsigned int dictGenHashFunction(const void *key, int len) {
    /* 'm' and 'r' are mixing constants generated offline.
     They're not really 'magic', they just happen to work well.  */
    //seed种子。m。r的值都将会參与到计算中
    uint32_t seed = dict_hash_function_seed;
    const uint32_t m = 0x5bd1e995;
    const int r = 24;

    /* Initialize the hash to a 'random' value */
    uint32_t h = seed ^ len;

    /* Mix 4 bytes at a time into the hash */
    const unsigned char *data = (const unsigned char *)key;

    while(len >= 4) {
        uint32_t k = *(uint32_t*)data;

        k *= m;
        k ^= k >> r;
        k *= m;

        h *= m;
        h ^= k;

        data += 4;
        len -= 4;
    }

    /* Handle the last few bytes of the input array  */
    switch(len) {
    case 3: h ^= data[2] << 16;
    case 2: h ^= data[1] << 8;
    case 1: h ^= data[0]; h *= m;
    };

    /* Do a few final mixes of the hash to ensure the last few
     * bytes are well-incorporated. */
    h ^= h >> 13;
    h *= m;
    h ^= h >> 15;

    return (unsigned int)h;
}

/* And a case insensitive hash function (based on djb hash) */
/* 这里提供了一种比較简单的哈希算法 */
unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
	//以djb hash为基础,俗称“times33”就是不断的乘33
	//差点儿全部的流行的hash map都採用了DJB hash function
    unsigned int hash = (unsigned int)dict_hash_function_seed;

    while (len--)
        hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */
    return hash;
}

/* ----------------------------- API implementation ------------------------- */

/* Reset a hash table already initialized with ht_init().
 * NOTE: This function should only be called by ht_destroy(). */
/* 重置哈希表方法,仅仅在ht_destroy时使用 */
static void _dictReset(dictht *ht)
{
	//清空相应的变量,ht->table的类型事实上是dictEntry,叫table名字太有歧义了
    ht->table = NULL;
    ht->size = 0;
    ht->sizemask = 0;
    ht->used = 0;
}

/* Create a new hash table */
/* 创建dict操作类 */
dict *dictCreate(dictType *type,
        void *privDataPtr)
{
    dict *d = zmalloc(sizeof(*d));
	
	//创建好空间之后调用初始化方法
    _dictInit(d,type,privDataPtr);
    return d;
}

/* Initialize the hash table */
/* 初始化dict类中的type,ht等变量 */
int _dictInit(dict *d, dictType *type,
        void *privDataPtr)
{
	//重置2个ht哈希表
    _dictReset(&d->ht[0]);
    _dictReset(&d->ht[1]);
    //赋值dictType
    d->type = type;
    d->privdata = privDataPtr;
    //-1代表还没有rehash过,
    d->rehashidx = -1;
    //当前使用中的迭代器为0
    d->iterators = 0;
    
    //返回DICT_OK,代表初始化成功
    return DICT_OK;
}

/* Resize the table to the minimal size that contains all the elements,
 * but with the invariant of a USED/BUCKETS ratio near to <= 1 */
/* 调整哈希表,用最少的值容纳全部的字典集合 */
int dictResize(dict *d)
{
    int minimal;

	//假设系统默认调整值不大于0或已经调rehash过的就提示出错,拒绝操作
    if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
    
    //最少数等于哈希标准鸿正在使用的数
    minimal = d->ht[0].used;
    if (minimal < DICT_HT_INITIAL_SIZE)
        minimal = DICT_HT_INITIAL_SIZE;
    
    //调用expand扩容
    return dictExpand(d, minimal);
}

/* Expand or create the hash table */
/* 哈希表扩增方法 */
int dictExpand(dict *d, unsigned long size)
{
    dictht n; /* the new hash table */
    //获取调整值,以2的幂次向上取
    unsigned long realsize = _dictNextPower(size);

    /* the size is invalid if it is smaller than the number of
     * elements already inside the hash table */
     //再次推断数量符合不符合
    if (dictIsRehashing(d) || d->ht[0].used > size)
        return DICT_ERR;

    /* Allocate the new hash table and initialize all pointers to NULL */
    //初始化大小
    n.size = realsize;
    n.sizemask = realsize-1;
    //为表格申请realsize个字典集的大小
    n.table = zcalloc(realsize*sizeof(dictEntry*));
    n.used = 0;

    /* Is this the first initialization? If so it's not really a rehashing
     * we just set the first hash table so that it can accept keys. */
    if (d->ht[0].table == NULL) {
        d->ht[0] = n;
        return DICT_OK;
    }

    /* Prepare a second hash table for incremental rehashing */
   	//赋值给第二张表格
    d->ht[1] = n;
    d->rehashidx = 0;
    return DICT_OK;
}

/* Performs N steps of incremental rehashing. Returns 1 if there are still
 * keys to move from the old to the new hash table, otherwise 0 is returned.
 * Note that a rehashing step consists in moving a bucket (that may have more
 * than one key as we use chaining) from the old to the new hash table. */
/* hash重定位,主要从旧的表映射到新表中
 * 假设返回1说明旧的表中还存在key迁移到新表中。0代表没有 */
int dictRehash(dict *d, int n) {
    if (!dictIsRehashing(d)) return 0;
	
	/* 依据參数分n步多次循环操作 */
    while(n--) {
        dictEntry *de, *nextde;

        /* Check if we already rehashed the whole table... */
        if (d->ht[0].used == 0) {
            zfree(d->ht[0].table);
            d->ht[0] = d->ht[1];
            _dictReset(&d->ht[1]);
            d->rehashidx = -1;
            return 0;
        }

        /* Note that rehashidx can't overflow as we are sure there are more
         * elements because ht[0].used != 0 */
        assert(d->ht[0].size > (unsigned long)d->rehashidx);
        while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
        de = d->ht[0].table[d->rehashidx];
        /* Move all the keys in this bucket from the old to the new hash HT */
        /* 移动的关键操作 */
        while(de) {
            unsigned int h;

            nextde = de->next;
            /* Get the index in the new hash table */
            h = dictHashKey(d, de->key) & d->ht[1].sizemask;
            de->next = d->ht[1].table[h];
            d->ht[1].table[h] = de;
            d->ht[0].used--;
            d->ht[1].used++;
            de = nextde;
        }
        d->ht[0].table[d->rehashidx] = NULL;
        d->rehashidx++;
    }
    return 1;
}

/* 获取当前毫秒的时间 */
long long timeInMilliseconds(void) {
    struct timeval tv;

    gettimeofday(&tv,NULL);
    return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
}

/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
/* 在给定时间内。循环运行哈希重定位 */
int dictRehashMilliseconds(dict *d, int ms) {
    long long start = timeInMilliseconds();
    int rehashes = 0;

    while(dictRehash(d,100)) {
    	//重定位的次数累加
        rehashes += 100;
        //时间超出给定时间范围。则终止
        if (timeInMilliseconds()-start > ms) break;
    }
    return rehashes;
}

/* This function performs just a step of rehashing, and only if there are
 * no safe iterators bound to our hash table. When we have iterators in the
 * middle of a rehashing we can't mess with the two hash tables otherwise
 * some element can be missed or duplicated.
 *
 * This function is called by common lookup or update operations in the
 * dictionary so that the hash table automatically migrates from H1 to H2
 * while it is actively used. */
/* 当没有迭代器时候,进行重定位算法 */
static void _dictRehashStep(dict *d) {
    if (d->iterators == 0) dictRehash(d,1);
}

/* Add an element to the target hash table */
/* 加入一个dicEntry */
int dictAdd(dict *d, void *key, void *val)
{
    dictEntry *entry = dictAddRaw(d,key);

    if (!entry) return DICT_ERR;
    dictSetVal(d, entry, val);
    return DICT_OK;
}

/* Low level add. This function adds the entry but instead of setting
 * a value returns the dictEntry structure to the user, that will make
 * sure to fill the value field as he wishes.
 *
 * This function is also directly exposed to user API to be called
 * mainly in order to store non-pointers inside the hash value, example:
 *
 * entry = dictAddRaw(dict,mykey);
 * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
 *
 * Return values:
 *
 * If key already exists NULL is returned.
 * If key was added, the hash entry is returned to be manipulated by the caller.
 */
/* 加入一个指定key值的Entry */
dictEntry *dictAddRaw(dict *d, void *key)
{
    int index;
    dictEntry *entry;
    dictht *ht;

    if (dictIsRehashing(d)) _dictRehashStep(d);

    /* Get the index of the new element, or -1 if
     * the element already exists. */
    /* 假设指定的key已经存在,则直接返回NULL说明加入失败 */
    if ((index = _dictKeyIndex(d, key)) == -1)
        return NULL;

    /* Allocate the memory and store the new entry */
    ht = dictIsRehashing(d) ?

&d->ht[1] : &d->ht[0]; entry = zmalloc(sizeof(*entry)); entry->next = ht->table[index]; ht->table[index] = entry; ht->used++; /* Set the hash entry fields. */ dictSetKey(d, entry, key); return entry; } /* Add an element, discarding the old if the key already exists. * Return 1 if the key was added from scratch, 0 if there was already an * element with such key and dictReplace() just performed a value update * operation. */ /* 替换一个子字典集,假设不存在直接加入,存在。覆盖val的值 */ int dictReplace(dict *d, void *key, void *val) { dictEntry *entry, auxentry; /* Try to add the element. If the key * does not exists dictAdd will suceed. */ //不存在,这个key直接加入 if (dictAdd(d, key, val) == DICT_OK) return 1; /* It already exists, get the entry */ entry = dictFind(d, key); /* Set the new value and free the old one. Note that it is important * to do that in this order, as the value may just be exactly the same * as the previous one. In this context, think to reference counting, * you want to increment (set), and then decrement (free), and not the * reverse. */ //赋值方法 auxentry = *entry; dictSetVal(d, entry, val); dictFreeVal(d, &auxentry); return 0; } /* dictReplaceRaw() is simply a version of dictAddRaw() that always * returns the hash entry of the specified key, even if the key already * exists and can't be added (in that case the entry of the already * existing key is returned.) * * See dictAddRaw() for more information. */ /* 加入字典,没有函数方法。假设存在,就不加入 */ dictEntry *dictReplaceRaw(dict *d, void *key) { dictEntry *entry = dictFind(d,key); return entry ? entry : dictAddRaw(d,key); } /* Search and remove an element */ /* 删除给定key的结点,可控制是否调用释放方法 */ static int dictGenericDelete(dict *d, const void *key, int nofree) { unsigned int h, idx; dictEntry *he, *prevHe; int table; if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */ if (dictIsRehashing(d)) _dictRehashStep(d); //计算key相应的哈希索引 h = dictHashKey(d, key); for (table = 0; table <= 1; table++) { idx = h & d->ht[table].sizemask; //找到详细的索引相应的结点 he = d->ht[table].table[idx]; prevHe = NULL; while(he) { if (dictCompareKeys(d, key, he->key)) { /* Unlink the element from the list */ if (prevHe) prevHe->next = he->next; else d->ht[table].table[idx] = he->next; if (!nofree) { //推断是否须要调用dict定义的free方法 dictFreeKey(d, he); dictFreeVal(d, he); } zfree(he); d->ht[table].used--; return DICT_OK; } prevHe = he; he = he->next; } if (!dictIsRehashing(d)) break; } return DICT_ERR; /* not found */ } /* 会调用free方法的删除方法 */ int dictDelete(dict *ht, const void *key) { return dictGenericDelete(ht,key,0); } /* 不会调用free方法的删除方法 */ int dictDeleteNoFree(dict *ht, const void *key) { return dictGenericDelete(ht,key,1); } /* Destroy an entire dictionary */ /* 清空整个哈希表 */ int _dictClear(dict *d, dictht *ht, void(callback)(void *)) { unsigned long i; /* Free all the elements */ for (i = 0; i < ht->size && ht->used > 0; i++) { dictEntry *he, *nextHe; //每次情况会调用回调方法 if (callback && (i & 65535) == 0) callback(d->privdata); if ((he = ht->table[i]) == NULL) continue; while(he) { //依次释放结点 nextHe = he->next; dictFreeKey(d, he); dictFreeVal(d, he); zfree(he); ht->used--; he = nextHe; } } /* Free the table and the allocated cache structure */ zfree(ht->table); /* Re-initialize the table */ _dictReset(ht); return DICT_OK; /* never fails */ } /* Clear & Release the hash table */ /* 重置字典总类,清空2张表 */ void dictRelease(dict *d) { _dictClear(d,&d->ht[0],NULL); _dictClear(d,&d->ht[1],NULL); zfree(d); } /* 依据key返回详细的字典集 */ dictEntry *dictFind(dict *d, const void *key) { dictEntry *he; unsigned int h, idx, table; if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */ if (dictIsRehashing(d)) _dictRehashStep(d); h = dictHashKey(d, key); for (table = 0; table <= 1; table++) { idx = h & d->ht[table].sizemask; he = d->ht[table].table[idx]; while(he) { if (dictCompareKeys(d, key, he->key)) return he; he = he->next; } if (!dictIsRehashing(d)) return NULL; } return NULL; } /* 获取目标字典集的方法 */ void *dictFetchValue(dict *d, const void *key) { dictEntry *he; he = dictFind(d,key); /* 获取字典集的方法 */ return he ? dictGetVal(he) : NULL; } /* A fingerprint is a 64 bit number that represents the state of the dictionary * at a given time, it's just a few dict properties xored together. * When an unsafe iterator is initialized, we get the dict fingerprint, and check * the fingerprint again when the iterator is released. * If the two fingerprints are different it means that the user of the iterator * performed forbidden operations against the dictionary while iterating. */ /* 通过指纹来禁止每一个不安全的哈希迭代器的非法操作。每一个不安全迭代器仅仅能有一个指纹 */ long long dictFingerprint(dict *d) { long long integers[6], hash = 0; int j; integers[0] = (long) d->ht[0].table; integers[1] = d->ht[0].size; integers[2] = d->ht[0].used; integers[3] = (long) d->ht[1].table; integers[4] = d->ht[1].size; integers[5] = d->ht[1].used; /* We hash N integers by summing every successive integer with the integer * hashing of the previous sum. Basically: * * Result = hash(hash(hash(int1)+int2)+int3) ... * * This way the same set of integers in a different order will (likely) hash * to a different number. */ for (j = 0; j < 6; j++) { hash += integers[j]; /* For the hashing step we use Tomas Wang's 64 bit integer hash. */ hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1; hash = hash ^ (hash >> 24); hash = (hash + (hash << 3)) + (hash << 8); // hash * 265 hash = hash ^ (hash >> 14); hash = (hash + (hash << 2)) + (hash << 4); // hash * 21 hash = hash ^ (hash >> 28); hash = hash + (hash << 31); } return hash; } /* 获取哈希迭代器。默认不安全的 */ dictIterator *dictGetIterator(dict *d) { dictIterator *iter = zmalloc(sizeof(*iter)); iter->d = d; iter->table = 0; iter->index = -1; iter->safe = 0; iter->entry = NULL; iter->nextEntry = NULL; return iter; } /* 获取安全哈希迭代器 */ dictIterator *dictGetSafeIterator(dict *d) { dictIterator *i = dictGetIterator(d); i->safe = 1; return i; } /* 迭代器获取下一个集合点 */ dictEntry *dictNext(dictIterator *iter) { while (1) { if (iter->entry == NULL) { dictht *ht = &iter->d->ht[iter->table]; if (iter->index == -1 && iter->table == 0) { //假设迭代器index下标为-1说明还没開始使用,设置迭代器的指纹或添加引用计数量 if (iter->safe) iter->d->iterators++; else iter->fingerprint = dictFingerprint(iter->d); } //迭代器下标递增 iter->index++; if (iter->index >= (long) ht->size) { if (dictIsRehashing(iter->d) && iter->table == 0) { iter->table++; iter->index = 0; ht = &iter->d->ht[1]; } else { break; } } //依据下标选择集合点 iter->entry = ht->table[iter->index]; } else { iter->entry = iter->nextEntry; } if (iter->entry) { /* We need to save the 'next' here, the iterator user * may delete the entry we are returning. */ iter->nextEntry = iter->entry->next; return iter->entry; } } return NULL; } /* 释放迭代器 */ void dictReleaseIterator(dictIterator *iter) { if (!(iter->index == -1 && iter->table == 0)) { if (iter->safe) iter->d->iterators--; else //这时推断指纹是否还是之前定义的那个 assert(iter->fingerprint == dictFingerprint(iter->d)); } zfree(iter); } /* Return a random entry from the hash table. Useful to * implement randomized algorithms */ /* 随机获取一个集合点 */ dictEntry *dictGetRandomKey(dict *d) { dictEntry *he, *orighe; unsigned int h; int listlen, listele; if (dictSize(d) == 0) return NULL; if (dictIsRehashing(d)) _dictRehashStep(d); if (dictIsRehashing(d)) { do { //随机数向2个表格的总数求余运算 h = random() % (d->ht[0].size+d->ht[1].size); he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] : d->ht[0].table[h]; } while(he == NULL); } else { do { h = random() & d->ht[0].sizemask; he = d->ht[0].table[h]; } while(he == NULL); } /* Now we found a non empty bucket, but it is a linked * list and we need to get a random element from the list. * The only sane way to do so is counting the elements and * select a random index. */ listlen = 0; orighe = he; while(he) { he = he->next; listlen++; } listele = random() % listlen; he = orighe; while(listele--) he = he->next; return he; } /* Function to reverse bits. Algorithm from: * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel */ /* 非常奇妙的翻转位 */ static unsigned long rev(unsigned long v) { unsigned long s = 8 * sizeof(v); // bit size; must be power of 2 unsigned long mask = ~0; while ((s >>= 1) > 0) { mask ^= (mask << s); v = ((v >> s) & mask) | ((v << s) & ~mask); } return v; } /* dictScan() is used to iterate over the elements of a dictionary. * * Iterating works in the following way: * * 1) Initially you call the function using a cursor (v) value of 0. * 2) The function performs one step of the iteration, and returns the * new cursor value that you must use in the next call. * 3) When the returned cursor is 0, the iteration is complete. * * The function guarantees that all the elements that are present in the * dictionary from the start to the end of the iteration are returned. * However it is possible that some element is returned multiple time. * * For every element returned, the callback 'fn' passed as argument is * called, with 'privdata' as first argument and the dictionar entry * 'de' as second argument. * * HOW IT WORKS. * * The algorithm used in the iteration was designed by Pieter Noordhuis. * The main idea is to increment a cursor starting from the higher order * bits, that is, instead of incrementing the cursor normally, the bits * of the cursor are reversed, then the cursor is incremented, and finally * the bits are reversed again. * * This strategy is needed because the hash table may be resized from one * call to the other call of the same iteration. * * dict.c hash tables are always power of two in size, and they * use chaining, so the position of an element in a given table is given * always by computing the bitwise AND between Hash(key) and SIZE-1 * (where SIZE-1 is always the mask that is equivalent to taking the rest * of the division between the Hash of the key and SIZE). * * For example if the current hash table size is 16, the mask is * (in binary) 1111. The position of a key in the hash table will be always * the last four bits of the hash output, and so forth. * * WHAT HAPPENS IF THE TABLE CHANGES IN SIZE?

* * If the hash table grows, elements can go anyway in one multiple of * the old bucket: for example let's say that we already iterated with * a 4 bit cursor 1100, since the mask is 1111 (hash table size = 16). * * If the hash table will be resized to 64 elements, and the new mask will * be 111111, the new buckets that you obtain substituting in ??

1100 * either 0 or 1, can be targeted only by keys that we already visited * when scanning the bucket 1100 in the smaller hash table. * * By iterating the higher bits first, because of the inverted counter, the * cursor does not need to restart if the table size gets bigger, and will * just continue iterating with cursors that don't have '1100' at the end, * nor any other combination of final 4 bits already explored. * * Similarly when the table size shrinks over time, for example going from * 16 to 8, If a combination of the lower three bits (the mask for size 8 * is 111) was already completely explored, it will not be visited again * as we are sure that, we tried for example, both 0111 and 1111 (all the * variations of the higher bit) so we don't need to test it again. * * WAIT... YOU HAVE *TWO* TABLES DURING REHASHING! * * Yes, this is true, but we always iterate the smaller one of the tables, * testing also all the expansions of the current cursor into the larger * table. So for example if the current cursor is 101 and we also have a * larger table of size 16, we also test (0)101 and (1)101 inside the larger * table. This reduces the problem back to having only one table, where * the larger one, if exists, is just an expansion of the smaller one. * * LIMITATIONS * * This iterator is completely stateless, and this is a huge advantage, * including no additional memory used. * * The disadvantages resulting from this design are: * * 1) It is possible that we return duplicated elements. However this is usually * easy to deal with in the application level. * 2) The iterator must return multiple elements per call, as it needs to always * return all the keys chained in a given bucket, and all the expansions, so * we are sure we don't miss keys moving. * 3) The reverse cursor is somewhat hard to understand at first, but this * comment is supposed to help. */ /* 扫描方法 */ unsigned long dictScan(dict *d, unsigned long v, dictScanFunction *fn, void *privdata) { dictht *t0, *t1; const dictEntry *de; unsigned long m0, m1; if (dictSize(d) == 0) return 0; if (!dictIsRehashing(d)) { t0 = &(d->ht[0]); m0 = t0->sizemask; /* Emit entries at cursor */ de = t0->table[v & m0]; while (de) { fn(privdata, de); de = de->next; } } else { t0 = &d->ht[0]; t1 = &d->ht[1]; /* Make sure t0 is the smaller and t1 is the bigger table */ if (t0->size > t1->size) { t0 = &d->ht[1]; t1 = &d->ht[0]; } m0 = t0->sizemask; m1 = t1->sizemask; /* Emit entries at cursor */ de = t0->table[v & m0]; while (de) { fn(privdata, de); de = de->next; } /* Iterate over indices in larger table that are the expansion * of the index pointed to by the cursor in the smaller table */ do { /* Emit entries at cursor */ de = t1->table[v & m1]; while (de) { fn(privdata, de); de = de->next; } /* Increment bits not covered by the smaller mask */ v = (((v | m0) + 1) & ~m0) | (v & m0); /* Continue while bits covered by mask difference is non-zero */ } while (v & (m0 ^ m1)); } /* Set unmasked bits so incrementing the reversed cursor * operates on the masked bits of the smaller table */ v |= ~m0; /* Increment the reverse cursor */ v = rev(v); v++; v = rev(v); return v; } /* ------------------------- private functions ------------------------------ */ /* Expand the hash table if needed */ /* 推断是否须要扩容 */ static int _dictExpandIfNeeded(dict *d) { /* Incremental rehashing already in progress. Return. */ if (dictIsRehashing(d)) return DICT_OK; /* If the hash table is empty expand it to the initial size. */ if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE); /* If we reached the 1:1 ratio, and we are allowed to resize the hash * table (global setting) or we should avoid it but the ratio between * elements/buckets is over the "safe" threshold, we resize doubling * the number of buckets. */ /* 推断是否须要扩容 */ if (d->ht[0].used >= d->ht[0].size && (dict_can_resize || d->ht[0].used/d->ht[0].size > dict_force_resize_ratio)) { return dictExpand(d, d->ht[0].used*2); } return DICT_OK; } /* Our hash table capability is a power of two */ /* 哈希表的容量以2的幂次方。所以数量以2的幂次向上取 */ static unsigned long _dictNextPower(unsigned long size) { unsigned long i = DICT_HT_INITIAL_SIZE; if (size >= LONG_MAX) return LONG_MAX; while(1) { if (i >= size) return i; i *= 2; } } /* Returns the index of a free slot that can be populated with * a hash entry for the given 'key'. * If the key already exists, -1 is returned. * * Note that if we are in the process of rehashing the hash table, the * index is always returned in the context of the second (new) hash table. */ /* 获取key值相应的哈希索引值。假设已经存在此key则返回-1 */ static int _dictKeyIndex(dict *d, const void *key) { unsigned int h, idx, table; dictEntry *he; /* Expand the hash table if needed */ if (_dictExpandIfNeeded(d) == DICT_ERR) return -1; /* Compute the key hash value */ h = dictHashKey(d, key); for (table = 0; table <= 1; table++) { idx = h & d->ht[table].sizemask; /* Search if this slot does not already contain the given key */ he = d->ht[table].table[idx]; while(he) { if (dictCompareKeys(d, key, he->key)) return -1; he = he->next; } if (!dictIsRehashing(d)) break; } return idx; } /* 清空整个字典,即清空里面的2张哈希表 */ void dictEmpty(dict *d, void(callback)(void*)) { _dictClear(d,&d->ht[0],callback); _dictClear(d,&d->ht[1],callback); d->rehashidx = -1; d->iterators = 0; } /*启用哈希表调整*/ void dictEnableResize(void) { dict_can_resize = 1; } /* 启用哈希表调整 */ void dictDisableResize(void) { dict_can_resize = 0; } #if 0 /* The following is code that we don't use for Redis currently, but that is part of the library. */ /* redis中还存着调试的代码 */ /* ----------------------- Debugging ------------------------*/ #define DICT_STATS_VECTLEN 50 static void _dictPrintStatsHt(dictht *ht) { unsigned long i, slots = 0, chainlen, maxchainlen = 0; unsigned long totchainlen = 0; unsigned long clvector[DICT_STATS_VECTLEN]; if (ht->used == 0) { printf("No stats available for empty dictionaries "); return; } for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0; for (i = 0; i < ht->size; i++) { dictEntry *he; if (ht->table[i] == NULL) { clvector[0]++; continue; } slots++; /* For each hash entry on this slot... */ chainlen = 0; he = ht->table[i]; while(he) { chainlen++; he = he->next; } clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++; if (chainlen > maxchainlen) maxchainlen = chainlen; totchainlen += chainlen; } printf("Hash table stats: "); printf(" table size: %ld ", ht->size); printf(" number of elements: %ld ", ht->used); printf(" different slots: %ld ", slots); printf(" max chain length: %ld ", maxchainlen); printf(" avg chain length (counted): %.02f ", (float)totchainlen/slots); printf(" avg chain length (computed): %.02f ", (float)ht->used/slots); printf(" Chain length distribution: "); for (i = 0; i < DICT_STATS_VECTLEN-1; i++) { if (clvector[i] == 0) continue; printf(" %s%ld: %ld (%.02f%%) ",(i == DICT_STATS_VECTLEN-1)?

">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100); } } void dictPrintStats(dict *d) { _dictPrintStatsHt(&d->ht[0]); if (dictIsRehashing(d)) { printf("-- Rehashing into ht[1]: "); _dictPrintStatsHt(&d->ht[1]); } } /* ----------------------- StringCopy Hash Table Type ------------------------*/ static unsigned int _dictStringCopyHTHashFunction(const void *key) { return dictGenHashFunction(key, strlen(key)); } static void *_dictStringDup(void *privdata, const void *key) { int len = strlen(key); char *copy = zmalloc(len+1); DICT_NOTUSED(privdata); memcpy(copy, key, len); copy[len] = ''; return copy; } static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1, const void *key2) { DICT_NOTUSED(privdata); return strcmp(key1, key2) == 0; } static void _dictStringDestructor(void *privdata, void *key) { DICT_NOTUSED(privdata); zfree(key); } /* 定义了3种类型的dictType,有些类型无val dup方法的定义 */ dictType dictTypeHeapStringCopyKey = { _dictStringCopyHTHashFunction, /* hash function */ _dictStringDup, /* key dup */ NULL, /* val dup */ _dictStringCopyHTKeyCompare, /* key compare */ _dictStringDestructor, /* key destructor */ NULL /* val destructor */ }; /* This is like StringCopy but does not auto-duplicate the key. * It's used for intepreter's shared strings. */ dictType dictTypeHeapStrings = { _dictStringCopyHTHashFunction, /* hash function */ NULL, /* key dup */ NULL, /* val dup */ _dictStringCopyHTKeyCompare, /* key compare */ _dictStringDestructor, /* key destructor */ NULL /* val destructor */ }; /* This is like StringCopy but also automatically handle dynamic * allocated C strings as values. */ dictType dictTypeHeapStringCopyKeyValue = { _dictStringCopyHTHashFunction, /* hash function */ _dictStringDup, /* key dup */ _dictStringDup, /* val dup */ _dictStringCopyHTKeyCompare, /* key compare */ _dictStringDestructor, /* key destructor */ _dictStringDestructor, /* val destructor */ }; #endif </span>


哈希算法的索引计算事实上我还是有点不理解的地方的。比方他的索引计算,会从一张旧表映射到一个新表,作者出于什么目的,或许以后再看的时候才会明确吧。

原文地址:https://www.cnblogs.com/mengfanrong/p/5246615.html