机器翻译模型 Transformer

transformer是一种不同于RNN的架构,模型同样包含 encoder 和 decoder ,但是encoder 和 decoder 抛弃 了RNN,而使用各种前馈层堆叠在一起。

Encoder:

    编码器是由N个完全一样的层堆叠起来的,每层又包括两个子层(sub-layer),第一个子层是multi-head self-attention mechanism层,第二个子层是一个简单的多层全连接层(fully connected feed-forward network)

Decoder:

   解码器也是由N 个相同层的堆叠起来的。 但每层包括三个子层(sub-layer),第一个子层是multi-head self-attention层,第二个子层是multi-head context-attention 层,第三个子层是一个简单的多层全连接层(fully connected feed-forward network)

模型的架构如下

一  module

(1)multi-head self-attention

multi-head self-attention是key=value=query=隐层的注意力机制

Encoder的multi-head self-attention是key=value=query=编码层隐层的注意力机制

Decoder的multi-head self-attention是key=value=query=解码层隐层的注意力机制

这里介绍自注意力机制(self-attention)也就是key=value=query=H的情况下的输出

隐层所有时间序列的状态H,$h_{i}$代表第i个词对应的隐藏层状态

[H = left[ egin{array}{l}
{h_1}\
{h_2}\
...\
{h_n}
end{array} ight] in {R^{n imes dim }}{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {h_i} in {R^{1 imes dim }}]

H的转置为
[{H^T} = [h_1^T,h_2^T,...,h_n^T] in {R^{dim  imes n}}{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {h_i} in {R^{1 imes dim }}]

 如果只计算一个单词对应的隐层状态$h_{i}$的self-attention

[egin{array}{l}
weigh{t_{_{{h_i}}}}{ m{ = softmax}}(({h_i}W_{query}^i)*(W_{key}^i*left[ {egin{array}{*{20}{c}}
{h_1^T}&{h_2^T}&{...}&{h_n^T}
end{array}} ight])) = left[ {egin{array}{*{20}{c}}
{weigh{t_{i1}},}&{weigh{t_{i2}},}&{...}&{weigh{t_{in}}}
end{array}} ight]\
{ m{value = }}left[ {egin{array}{*{20}{l}}
{{h_1}}\
{{h_2}}\
{...}\
{{h_n}}
end{array}} ight]*W_{value}^i = left[ {egin{array}{*{20}{l}}
{{h_1}W_{value}^i}\
{{h_2}W_{value}^i}\
{...}\
{{h_n}W_{value}^i}
end{array}} ight]\
Attentio{n_{{h_i}}} = weigh{t_{_{{h_i}}}}*value = sumlimits_{k = 1}^n {({h_k}W_{value}^i} )(weigh{t_{ik}})
end{array}]

同理,一次性计算所有单词隐层状态$h_{i}(1<=i<=n)$的self-attention

[egin{array}{l}
{ m{weight}}{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} { m{ = softmax}}(left[ {egin{array}{*{20}{l}}
{{h_1}}\
{{h_2}}\
{...}\
{{h_n}}
end{array}} ight]W_{query}^i*(W_{key}^i*left[ {egin{array}{*{20}{c}}
{h_1^T}&{h_2^T}&{...}&{h_n^T}
end{array}} ight])\
{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} { m{ = softmax}}(left[ {egin{array}{*{20}{l}}
{{h_1}W_{query}^i}\
{{h_2}W_{query}^i}\
{...}\
{{h_n}W_{query}^i}
end{array}} ight]*left[ {egin{array}{*{20}{c}}
{W_{key}^ih_1^T}&{W_{key}^ih_2^T}&{...}&{W_{key}^ih_n^T}
end{array}} ight]\
{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} { m{ = softmax}}(left[ {egin{array}{*{20}{c}}
{({h_1}W_{query}^i)(W_{key}^ih_1^T)}&{({h_1}W_{query}^i)(W_{key}^ih_2^T)}&{...}&{({h_1}W_{query}^i)(W_{key}^ih_n^T)}\
{({h_2}W_{query}^i)(W_{key}^ih_1^T)}&{({h_2}W_{query}^i)(W_{key}^ih_2^T)}&{...}&{({h_2}W_{query}^i)(W_{key}^ih_n^T)}\
{...}&{...}&{...}&{...}\
{({h_n}W_{query}^i)(W_{key}^ih_1^T)}&{({h_n}W_{query}^i)(W_{key}^ih_2^T)}&{...}&{({h_n}W_{query}^i)(W_{key}^ih_n^T)}
end{array}} ight])\
{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} { m{ = }}left[ {egin{array}{*{20}{c}}
{{ m{softmax}}(({h_1}W_{query}^iW_{key}^ih_1^T)}&{({h_1}W_{query}^iW_{key}^ih_2^T)}&{...}&{({h_1}W_{query}^iW_{key}^ih_n^T))}\
{{ m{softmax}}(({h_2}W_{query}^iW_{key}^ih_1^T)}&{({h_2}W_{query}^iW_{key}^ih_2^T)}&{...}&{({h_2}W_{query}^iW_{key}^ih_n^T))}\
{...}&{...}&{...}&{...}\
{{ m{softmax}}(({h_n}W_{query}^iW_{key}^ih_1^T)}&{({h_n}W_{query}^iW_{key}^ih_2^T)}&{...}&{({h_n}W_{query}^iW_{key}^ih_n^T))}
end{array}} ight]
end{array}]

[egin{array}{l}
{ m{sum}}(weight*value) = left[ egin{array}{l}
{ m{Weigh}}{{ m{t}}_{11}}({h_1}W_{value}^i) + { m{Weigh}}{{ m{t}}_{12}}({h_2}W_{value}^i) + ...{kern 1pt} {kern 1pt} + { m{Weigh}}{{ m{t}}_{1n}}({h_n}W_{value}^i)\
{ m{Weigh}}{{ m{t}}_{21}}({h_1}W_{value}^i) + { m{Weigh}}{{ m{t}}_{22}}({h_2}W_{value}^i) + ... + { m{Weigh}}{{ m{t}}_{2n}}({h_n}W_{value}^i)\
{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} ......\
{ m{Weigh}}{{ m{t}}_{n1}}({h_1}W_{value}^i) + { m{Weigh}}{{ m{t}}_{n2}}({h_2}W_{value}^i) + ... + { m{Weigh}}{{ m{t}}_{nn}}({h_n}W_{value}^i)
end{array} ight]\
{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} left[ egin{array}{l}
sumlimits_{k = 1}^n {{ m{Weigh}}{{ m{t}}_{1k}}({h_k}W_{value}^i)} \
sumlimits_{k = 1}^n {{ m{Weigh}}{{ m{t}}_{2k}}({h_k}W_{value}^i)} \
{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} .......\
sumlimits_{k = 1}^n {{ m{Weigh}}{{ m{t}}_{nk}}({h_k}W_{value}^i)}
end{array} ight]
end{array}]

所以最后的注意力向量为$head_{i}$

[egin{array}{l}
hea{d_i} = Attention(QW_{query}^i,KW_{query}^i,VW_{query}^i)\
{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} { m{ = }}{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} { m{sum}}(weight*value)\
{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} left[ egin{array}{l}
sumlimits_{k = 1}^n {{ m{Weigh}}{{ m{t}}_{1k}}({h_k}W_{value}^i)} \
sumlimits_{k = 1}^n {{ m{Weigh}}{{ m{t}}_{2k}}({h_k}W_{value}^i)} \
{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} .......\
sumlimits_{k = 1}^n {{ m{Weigh}}{{ m{t}}_{nk}}({h_k}W_{value}^i)}
end{array} ight]
end{array}]

softmax函数需要加一个平滑系数$ sqrt {{{ m{d}}_k}} $

[egin{array}{l}
hea{d_i} = Attention(QW_{query}^i,KW_{key}^i,VW_{value}^i)\
{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} { m{softmax}}(frac{{(QW_{query}^i){{(KW_{key}^i)}^T}}}{{sqrt {{d_k}} }})VW_{value}^i\
{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = { m{softmax}}(left[ {egin{array}{*{20}{c}}
{frac{{({h_1}W_{query}^i)(W_{key}^ih_1^T)}}{{sqrt {{d_k}} }}}&{frac{{({h_1}W_{query}^i)(W_{key}^ih_2^T)}}{{sqrt {{d_k}} }}}&{...}&{frac{{({h_1}W_{query}^i)(W_{key}^ih_n^T)}}{{sqrt {{d_k}} }}}\
{frac{{({h_2}W_{query}^i)(W_{key}^ih_1^T)}}{{sqrt {{d_k}} }}}&{frac{{({h_2}W_{query}^i)(W_{key}^ih_2^T)}}{{sqrt {{d_k}} }}}&{...}&{frac{{({h_2}W_{query}^i)(W_{key}^ih_n^T)}}{{sqrt {{d_k}} }}}\
{...}&{...}&{...}&{...}\
{frac{{({h_n}W_{query}^i)(W_{key}^ih_1^T)}}{{sqrt {{d_k}} }}}&{frac{{({h_n}W_{query}^i)(W_{key}^ih_2^T)}}{{sqrt {{d_k}} }}}&{...}&{frac{{({h_n}W_{query}^i)(W_{key}^ih_n^T)}}{{sqrt {{d_k}} }}}
end{array}} ight])VW_{value}^i\
{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = s{ m{um}}({ m{weigh}}{{ m{t}}_{sqrt {{d_k}} }}*value)
end{array}]

注意$sqrt d_k$ 是softmax中的temperature参数:

[{p_i} = frac{{{e^{frac{{{ m{logit}}{{ m{s}}_i}}}{ au }}}}}{{sumlimits_i {e_i^{frac{{{ m{logit}}{{ m{s}}_i}}}{ au }}} }}]

t越大,则经过softmax的得到的概率值之间越接近。t越小,则经过softmax得到的概率值之间越差异越大。当t趋近于0的时候,只有最大的一项是1,其他均几乎为0:

[mathop {lim }limits_{ au  o 0} {p_i} o 1{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} if{kern 1pt} {kern 1pt} {kern 1pt} {p_i} = max ({p_k}){kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} 1 le k le N{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} else{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} 0]

 MultiHead注意力向量由多个$head_{i}$拼接后过一个线性层得到最终的MultiHead Attention 

[egin{array}{l}
MulitiHead = Concat(hea{d_1},hea{d_2},...,hea{d_n}){W^o}{kern 1pt} {kern 1pt} {kern 1pt} \
where{kern 1pt} {kern 1pt} hea{d_i} = Attention(QW_{query}^i,KW_{key}^i,VW_{value}^i) = { m{softmax}}(frac{{(QW_{query}^i){{(KW_{key}^i)}^T}}}{{sqrt {{d_k}} }})VW_{value}^i
end{array}]

 (2)LayerNorm+Position-wise Feed-Forward Networks

[FFN(x) = max (0,x{W_1} + {b_1}){W_2} + {b_2}]

注意这里实现上和论文中有点区别,具体实现是先LayerNorm然后再FFN

class PositionwiseFeedForward(nn.Module):
    """ A two-layer Feed-Forward-Network with residual layer norm.

        Args:
            d_model (int): the size of input for the first-layer of the FFN.
            d_ff (int): the hidden layer size of the second-layer
                              of the FNN.
            dropout (float): dropout probability(0-1.0).
    """

    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.layer_norm = onmt.modules.LayerNorm(d_model)
        self.dropout_1 = nn.Dropout(dropout)
        self.relu = nn.ReLU()
        self.dropout_2 = nn.Dropout(dropout)

    def forward(self, x):
        """
        Layer definition.

        Args:
            input: [ batch_size, input_len, model_dim ]


        Returns:
            output: [ batch_size, input_len, model_dim ]
        """
        inter = self.dropout_1(self.relu(self.w_1(self.layer_norm(x))))
        output = self.dropout_2(self.w_2(inter))
        return output + x

 (3)Layer Normalization 

[{ m{x = }}left[ {egin{array}{*{20}{c}}
{{x_1}}&{{x_2}}&{...}&{{x_n}}
end{array}} ight]] $x_{1}, x_{2}, x_{3},... ,x_{n}$为样本$x$的不同特征 

[{{hat x}_i} = frac{{{x_i} - E(x)}}{{sqrt {Var(x)} }}]

[{ m{hat x = }}left[ {egin{array}{*{20}{c}}
{{{hat x}_1}}&{{{hat x}_2}}&{...}&{{{hat x}_n}}
end{array}} ight]]
最终$hat x$为layer normalization的输出,并且$hat x$均值为0,方差为1:

[egin{array}{l}
E({ m{hat x}}) = frac{1}{n}sumlimits_{i = 1}^n {{{hat x}_i}} = frac{1}{n}sumlimits_{i = 1}^n {frac{{{x_i} - E(x)}}{{sqrt {Var(x)} }} = } frac{1}{n}frac{{[({x_1} + {x_2} + ... + {x_n}) - nE(x)]}}{{sqrt {Var(x)} }} = 0\
Var({ m{hat x}}) = frac{1}{{n - 1}}sumlimits_{i = 1}^n {{{({ m{hat x}} - E({ m{hat x}}))}^2}} = frac{1}{{n - 1}}sumlimits_{i = 1}^n {{{{ m{hat x}}}^2}} = frac{1}{{n - 1}}sumlimits_{i = 1}^n {frac{{{{({x_i} - E(x))}^2}}}{{Var(x)}} = } frac{{frac{1}{{n - 1}}sumlimits_{i = 1}^n {{{({x_i} - E(x))}^2}} }}{{Var(x)}} = frac{{Var(x)}}{{Var(x)}} = 1
end{array}]

但是通常引入两个超参数w和bias, w和bias通过反向传递更新,但是初始值$w_{initial}=1, bias_{bias}=0$,$varepsilon$防止分母为0:

[{{hat x}_i} = w*frac{{{x_i} - E(x)}}{{sqrt {Var(x) + varepsilon } }} + bias]

伪代码如下:

class LayerNorm(nn.Module):
    """
        Layer Normalization class
    """

    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        """
        x=[-0.0101, 1.4038, -0.0116, 1.4277],
          [ 1.2195,  0.7676,  0.0129,  1.4265]
        """
        mean = x.mean(-1, keepdim=True)
        """
        mean=[[ 0.7025], 
              [ 0.8566]]
        """
        std = x.std(-1, keepdim=True)
        """
        std=[[0.8237],
             [0.6262]]
        """
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
        """
        self.a_2=[1,1,1,1]
        self.b_2=[0,0,0,0]
        return [[-0.8651,  0.8515, -0.8668,  0.8804],
               [ 0.5795, -0.1422, -1.3475,  0.9101]]
        
        """

 (4)Embedding

位置向量 Position Embedding

[egin{array}{l}
P{E_{pos,2i}} = sin (frac{{pos}}{{{ m{1000}}{{ m{0}}^{frac{{{ m{2i}}}}{{{{ m{d}}_{mod el}}}}}}}}) = sin (pos*div\_term)\
P{E_{pos,2i + 1}} = cos (frac{{pos}}{{{ m{1000}}{{ m{0}}^{frac{{{ m{2i}}}}{{{{ m{d}}_{mod el}}}}}}}}) = cos (pos*div\_term)\
div\_term = {e^{log (frac{1}{{{ m{1000}}{{ m{0}}^{frac{{{ m{2i}}}}{{{{ m{d}}_{mod el}}}}}}}}{ m{)}}}}{ m{ = }}{{ m{e}}^{ - frac{{2i}}{{{{ m{d}}_{mod el}}}}log (10000)}} = {{ m{e}}^{2i*( - frac{{log (10000)}}{{{{ m{d}}_{mod el}}}})}}
end{array}]

计算Position Embedding举例:

输入句子$S=[w_1,w_2,...,w_{max\_len}]$,  m为句子长度 ,假设max_len=3,且$d_{model}=4$:

pe = torch.zeros(max_len, dim)
position = torch.arange(0, max_len).unsqueeze(1) #position=[0,1,2] position.shape=(3,1) div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.float) *-(math.log(10000.0) / dim))) """ torch.arange(0, dim, 2, dtype=torch.float)=[0,2,4] shape=(3) -(math.log(10000.0) / dim)=-1.5350567286626973 (torch.arange(0, dim, 2, dtype=torch.float) *-(math.log(10000.0) / dim))=[0,2,4]*-1.5350567286626973=[-0.0000, -3.0701, -6.1402] div_term=exp([-0.0000, -3.0701, -6.1402])=[1.0000, 0.0464, 0.0022] """ pe[:, 0::2] = torch.sin(position.float() * div_term) """ pe=[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.8415, 0.0000, 0.0464, 0.0000, 0.0022, 0.0000], [ 0.9093, 0.0000, 0.0927, 0.0000, 0.0043, 0.0000]] """ pe[:, 1::2] = torch.cos(position.float() * div_term) """ pe=[[ 0.0000, 1.0000, 0.0000, 1.0000, 0.0000, 1.0000], [ 0.8415, 0.5403, 0.0464, 0.9989, 0.0022, 1.0000], [ 0.9093, -0.4161, 0.0927, 0.9957, 0.0043, 1.0000]] """ pe = pe.unsqueeze(1) #pe.shape=[3,1,6]

max_len=20,$d_{model}=4$Position Embedding,可以观察到同一个时间序列内t位置内大约只有前半部分起到区分位置的作用:

 

语义向量normal Embedding:
$x=[x_1,x_2,x_3,...,x_n]$,$x_i$为one-hot行向量
那么,代表语义的embedding是$emb=[emb_{1},emb_{2},emb_{3},...,emb_{n}$ $emb_{i}=x_iW$,transformer中的词向量表示为语义向量emb_{i}和位置向量pe_{i}之和
                                                                                         $emb^{final}_{i}=emb_{i}+pe_{i}$


Encoder

 (1)Encoder是由多个相同的层堆叠在一起的:$[input ightarrow embedding ightarrow self-attention ightarrow Add Norm ightarrow FFN  ightarrow Add Norm]$:

(2)Encoder的self-attention是既考虑前面的词也考虑后面的词的,而Decoder的self-attention只考虑前面的词,因此mask矩阵是全1。因此encoder的self-attention如下图:

伪代码如下:

class TransformerEncoderLayer(nn.Module):
    """
    A single layer of the transformer encoder.

    Args:
        d_model (int): the dimension of keys/values/queries in
                   MultiHeadedAttention, also the input size of
                   the first-layer of the PositionwiseFeedForward.
        heads (int): the number of head for MultiHeadedAttention.
        d_ff (int): the second-layer of the PositionwiseFeedForward.
        dropout (float): dropout probability(0-1.0).
    """

    def __init__(self, d_model, heads, d_ff, dropout):
        super(TransformerEncoderLayer, self).__init__()

        self.self_attn = onmt.modules.MultiHeadedAttention(
            heads, d_model, dropout=dropout)
        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm = onmt.modules.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, inputs, mask):
        """
        Transformer Encoder Layer definition.

        Args:
            inputs (`FloatTensor`): `[batch_size x src_len x model_dim]`
            mask (`LongTensor`): `[batch_size x src_len x src_len]`

        Returns:
            (`FloatTensor`):

            * outputs `[batch_size x src_len x model_dim]`
        """
        input_norm = self.layer_norm(inputs)
        context, _ = self.self_attn(input_norm, input_norm, input_norm,
                                    mask=mask)
        out = self.dropout(context) + inputs
        return self.feed_forward(out)
二 Decoder
(1)decoder中的self attention层在计算self attention的时候,因为实际预测中只能知道前面的词,因此在训练过程中只需要计算当前位置和前面位置的self attention,通过掩码来计算Masked Multi-head Attention层。
例如"I have an app",
翻译出第一个词后"I",
"I"的self attention只计算与"I"与自己的self attention: Attention("I","I"),来预测下一个词
翻译出"I have"计算"have""have","have""I"的self attention: Attention("have","I"), Attention("have","have"),来预测下一个词
翻译出"I have an"计算"an""an","an""have","an""I"的self attention: Attention("an","an"), Attention("an","have"),Attention("an","I")来预测下一个词
可以用下图来表示:

self-attention的伪代码如下:

class MultiHeadedAttention(nn.Module):
    """
    Args:
       head_count (int): number of parallel heads
       model_dim (int): the dimension of keys/values/queries,
           must be divisible by head_count
       dropout (float): dropout parameter
    """

    def __init__(self, head_count, model_dim, dropout=0.1):
        assert model_dim % head_count == 0
        self.dim_per_head = model_dim // head_count
        self.model_dim = model_dim
        super(MultiHeadedAttention, self).__init__()
        self.head_count = head_count
        self.linear_keys = nn.Linear(model_dim,model_dim)
        self.linear_values = nn.Linear(model_dim,model_dim)
        self.linear_query = nn.Linear(model_dim,model_dim)
        self.softmax = nn.Softmax(dim=-1)
        self.dropout = nn.Dropout(dropout)
        self.final_linear = nn.Linear(model_dim, model_dim)

    def forward(self, key, value, query, mask=None,
                layer_cache=None, type=None):
        """
        Compute the context vector and the attention vectors.

        Args:
           key (`FloatTensor`): set of `key_len`
                key vectors `[batch, key_len, dim]`
           value (`FloatTensor`): set of `key_len`
                value vectors `[batch, key_len, dim]`
           query (`FloatTensor`): set of `query_len`
                 query vectors  `[batch, query_len, dim]`
           mask: binary mask indicating which keys have
                 non-zero attention `[batch, query_len, key_len]`
        Returns:
           (`FloatTensor`, `FloatTensor`) :

           * output context vectors `[batch, query_len, dim]`
           * one of the attention vectors `[batch, query_len, key_len]`
        """

        batch_size = key.size(0)
        dim_per_head = self.dim_per_head
        head_count = self.head_count
        key_len = key.size(1)
        query_len = query.size(1)

        def shape(x):
            """  projection """
            return x.view(batch_size, -1, head_count, dim_per_head) 
                .transpose(1, 2)

        def unshape(x):
            """  compute context """
            return x.transpose(1, 2).contiguous() 
                    .view(batch_size, -1, head_count * dim_per_head)

        # 1) Project key, value, and query.
        if layer_cache is not None:
        
        key = self.linear_keys(key)
        #key.shape=[batch_size,key_len,dim] => key.shape=[batch_size,key_len,dim]
        value = self.linear_values(value)
        #value.shape=[batch_size,key_len,dim] => key.shape=[batch_size,key_len,dim]
        query = self.linear_query(query)
        #query.shape=[batch_size,key_len,dim] => key.shape=[batch_size,key_len,dim]
        key = shape(key)
        #key.shape=[batch_size,head_count,key_len,dim_per_head]
        value = shape(value)
        #value.shape=[batch_size,head_count,value_len,dim_per_head]
        query = shape(query)
        #query.shape=[batch_size,head_count,query_len,dim_per_head]

        key_len = key.size(2)
        query_len = query.size(2)

        # 2) Calculate and scale scores.
        query = query / math.sqrt(dim_per_head)
        scores = torch.matmul(query, key.transpose(2, 3))
        #query.shape=[batch_size,head_count,query_len,dim_per_head]
        #key.transpose(2, 3).shape=[batch_size,head_count,dim_per_head,key_len]
        #scores.shape=[batch_size,head_count,query_len,key_len]
        if mask is not None:
            mask = mask.unsqueeze(1).expand_as(scores)
            scores = scores.masked_fill(mask, -1e18)

        # 3) Apply attention dropout and compute context vectors.
        attn = self.softmax(scores)
        #scores.shape=[batch_size,head_count,query_len,key_len]
        drop_attn = self.dropout(attn)
        context = unshape(torch.matmul(drop_attn, value))
        #drop_attn.shape=[batch_size,head_count,query_len,key_len]
        #value.shape=[batch_size,head_count,value_len,dim_per_head]
        #torch.matmul(drop_attn, value).shape=[batch_size,head_count,query_len,dim_per_head]
        #context.shape=[batch_size,query_len,head_count*dim_per_head]
        output = self.final_linear(context)
        #context.shape=[batch_size,query_len,head_count*dim_per_head]


        return output

(2)Decoder的结构为$[input ightarrow embedding ightarrow self-attention ightarrow Add Norm ightarrow context-attention ightarrow FFN  ightarrow Add Norm]$:


class TransformerDecoderLayer(nn.Module):
    """
    Args:
      d_model (int): the dimension of keys/values/queries in
                       MultiHeadedAttention, also the input size of
                       the first-layer of the PositionwiseFeedForward.
      heads (int): the number of heads for MultiHeadedAttention.
      d_ff (int): the second-layer of the PositionwiseFeedForward.
      dropout (float): dropout probability(0-1.0).
      self_attn_type (string): type of self-attention scaled-dot, average
    """

    def __init__(self, d_model, heads, d_ff, dropout,
                 self_attn_type="scaled-dot"):
        super(TransformerDecoderLayer, self).__init__()

        self.self_attn_type = self_attn_type

        if self_attn_type == "scaled-dot":
            self.self_attn = onmt.modules.MultiHeadedAttention(
                heads, d_model, dropout=dropout)
        elif self_attn_type == "average":
            self.self_attn = onmt.modules.AverageAttention(
                d_model, dropout=dropout)

        self.context_attn = onmt.modules.MultiHeadedAttention(
            heads, d_model, dropout=dropout)
        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm_1 = onmt.modules.LayerNorm(d_model)
        self.layer_norm_2 = onmt.modules.LayerNorm(d_model)
        self.dropout = dropout
        self.drop = nn.Dropout(dropout)
        mask = self._get_attn_subsequent_mask(MAX_SIZE)
        # Register self.mask as a buffer in TransformerDecoderLayer, so
        # it gets TransformerDecoderLayer's cuda behavior automatically.
        self.register_buffer('mask', mask)

    def forward(self, inputs, memory_bank, src_pad_mask, tgt_pad_mask,
                previous_input=None, layer_cache=None, step=None):
        """
        Args:
            inputs (`FloatTensor`): `[batch_size x 1 x model_dim]`
            memory_bank (`FloatTensor`): `[batch_size x src_len x model_dim]`
            src_pad_mask (`LongTensor`): `[batch_size x 1 x src_len]`
            tgt_pad_mask (`LongTensor`): `[batch_size x 1 x 1]`

        Returns:
            (`FloatTensor`, `FloatTensor`, `FloatTensor`):

            * output `[batch_size x 1 x model_dim]`
            * attn `[batch_size x 1 x src_len]`
            * all_input `[batch_size x current_step x model_dim]`

        """
        dec_mask = torch.gt(tgt_pad_mask +
                            self.mask[:, :tgt_pad_mask.size(1),
                                      :tgt_pad_mask.size(1)], 0)
        input_norm = self.layer_norm_1(inputs)
        all_input = input_norm
        if previous_input is not None:
            all_input = torch.cat((previous_input, input_norm), dim=1)
            dec_mask = None

        if self.self_attn_type == "scaled-dot":
            query, attn = self.self_attn(all_input, all_input, input_norm,
                                         mask=dec_mask,
                                         layer_cache=layer_cache,
                                         type="self")
        elif self.self_attn_type == "average":
            query, attn = self.self_attn(input_norm, mask=dec_mask,
                                         layer_cache=layer_cache, step=step)

        query = self.drop(query) + inputs

        query_norm = self.layer_norm_2(query)
        mid, attn = self.context_attn(memory_bank, memory_bank, query_norm,
                                      mask=src_pad_mask,
                                      layer_cache=layer_cache,
                                      type="context")
        output = self.feed_forward(self.drop(mid) + query)

        return output, attn, all_input

五 label smoothing (标签平滑)

普通的交叉熵损失函数:

[egin{array}{l}
{ m{loss}} = - sumlimits_{k = 1}^K {tru{e_k}log (p(k|x))} \
p(k|x) = softmax (log it{s_k})\
log it{s_k} = sumlimits_i {{w_{ik}}{z_i}}
end{array}]

梯度为:

[egin{array}{l}
Delta {w_{ik}} = frac{{partial loss}}{{partial {w_{ik}}}} = frac{{partial loss}}{{partial logit{s_{ik}}}}frac{{partial logits}}{{partial {w_{ik}}}} = ({y_k} - labe{l_k}){z_k}\
label = [egin{array}{*{20}{c}}
{egin{array}{*{20}{c}}
{frac{alpha }{4}}&{frac{alpha }{4}}
end{array}}&{1 - alpha }&{frac{alpha }{4}}&{frac{alpha }{4}}
end{array}]
end{array}]

有一个问题

只有正确的那一个类别有贡献,其他标注数据中不正确的类别概率是0,无贡献,朝一个方向优化,容易导致过拟合

因此提出label smoothing 让标注数据中正确的类别概率小于1,其他不正确类别的概率大于0:

也就是之前$label=[0,0,0,1,0]$,通过标签平滑,给定一个固定参数$alpha$, 概率为1地方减去这个小概率,标签为0的地方平分这个小概率$alpha$变成:

[labe{l^{new}} = [egin{array}{*{20}{c}}
{egin{array}{*{20}{c}}
{frac{alpha }{4}}&{frac{alpha }{4}}
end{array}}&{1 - alpha }&{frac{alpha }{4}}&{frac{alpha }{4}}
end{array}]]

损失函数为

[egin{array}{l}
loss = - sumlimits_{k = 1}^K {label_k^{new}log p(k|x)} \
label_k^{new} = (1{ m{ - }}alpha ){delta _{k,y}} + frac{alpha }{K}({delta _{k,y}} = 1 quad if quad k==y quad else quad 0)\
loss = - (1{ m{ - }}alpha )sumlimits_{k = 1}^K {{ m{label}}log p(k|x)} - frac{alpha }{K}sumlimits_{k = 1}^K {(frac{alpha }{K})log p(k|x)} \
loss = (1{ m{ - }}alpha )CrossEntropy({ m{label}},p(k|x)) + frac{alpha }{K}CrossEntropy(frac{alpha }{K},p(k|x))
end{array}]

 引入相对熵函数:

[{D_{KL}}(Y||X) = sumlimits_i {Y(i)log (frac{{Y(i)}}{{X(i)}})}  = sumlimits_i {Y(i)log Y(i)}  - Y(i)log X(i)]

pytorch中的torch.nn.function.kl_div用来计算相对熵:

torch.nn.function.kl_div(y,x):$x=[x_1,x_2,...,x_N] y=[y_1,y_2,...,y_N]$:

$L=l_1+l_2+...+l_N其中 l_i=x_i*(log(x_i)-y_i)$

举例:x=[3]  y=[2]    torch.nn.function.kl_div(y,x)=3(log3-2)=-2.7042

class LabelSmoothingLoss(nn.Module):
    """
    With label smoothing,
    KL-divergence between q_{smoothed ground truth prob.}(w)
    and p_{prob. computed by model}(w) is minimized.
    """
    def __init__(self, label_smoothing, tgt_vocab_size, ignore_index=-100):
        assert 0.0 < label_smoothing <= 1.0
        self.padding_idx = ignore_index
        super(LabelSmoothingLoss, self).__init__()

        smoothing_value = label_smoothing / (tgt_vocab_size - 2)
        one_hot = torch.full((tgt_vocab_size,), smoothing_value)
        one_hot[self.padding_idx] = 0
        self.register_buffer('one_hot', one_hot.unsqueeze(0))

        self.confidence = 1.0 - label_smoothing

    def forward(self, output, target):
        """
        output (FloatTensor): batch_size x n_classes
        target (LongTensor): batch_size
        """
        model_prob = self.one_hot.repeat(target.size(0), 1)
        model_prob.scatter_(1, target.unsqueeze(1), self.confidence)
        model_prob.masked_fill_((target == self.padding_idx).unsqueeze(1), 0)

        return F.kl_div(output, model_prob, size_average=False)

附: Transformer与RNN的结合RNMT+(The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation)

(1)RNN:难以训练并且表达能力较弱 trainability versus expressivity

(2)Transformer:有很强的特征提取能力(a strong feature extractor),但是没有memory机制,因此需要额外引入位置向量。

 



原文地址:https://www.cnblogs.com/codeDog123/p/Transformer.html